@article{ISU_2014_14_2_a0,
author = {O. A. Bogdanchuk},
title = {On subvariety of variety generated by a~simple infinite {Lie} algebra of {Cartan} type general series~$W_2$},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {125--129},
year = {2014},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a0/}
}
TY - JOUR AU - O. A. Bogdanchuk TI - On subvariety of variety generated by a simple infinite Lie algebra of Cartan type general series $W_2$ JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 125 EP - 129 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a0/ LA - ru ID - ISU_2014_14_2_a0 ER -
%0 Journal Article %A O. A. Bogdanchuk %T On subvariety of variety generated by a simple infinite Lie algebra of Cartan type general series $W_2$ %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2014 %P 125-129 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a0/ %G ru %F ISU_2014_14_2_a0
O. A. Bogdanchuk. On subvariety of variety generated by a simple infinite Lie algebra of Cartan type general series $W_2$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 125-129. http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a0/
[1] Bakhturin Iu. A, Identities in Lie algebras, Nauka, Moscow, 1985, 448 pp. | MR | Zbl
[2] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, 122, American Math. Soc., Providence, RI, 2005, 352 pp. | DOI | MR | Zbl
[3] Mishchenko S. S., “New example of a variety of Lie algebras with fractional exponent”, Moscow Univ. Math. Bull., 66 (2011), 264–266 | DOI | MR
[4] Kirillov A. A., Molev A. I., On the algebraic structure of the Lie algebra of vector fields, Preprint No 16, In-t prikl. matematiki im. M. V. Keldysha AN SSSR, Moscow, 1985, 23 pp.
[5] Malyusheva O. A., Mishchenko S. P., Verevkin A. B., “Series of varieties of Lie algebras of different fractional exponents”, Compt. rend. Acad. Bulg. Sci., 66:3 (2013), 321–330 | MR