Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2014_14_1_a9, author = {E. I. Lomovtseva and Yu. N. Chelnokov}, title = {Dual matrix and biquaternion methods of solving direct and inverse kinematics problems of manipulators for example {Stanford} robot {arm.~II}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {88--95}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a9/} }
TY - JOUR AU - E. I. Lomovtseva AU - Yu. N. Chelnokov TI - Dual matrix and biquaternion methods of solving direct and inverse kinematics problems of manipulators for example Stanford robot arm.~II JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 88 EP - 95 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a9/ LA - ru ID - ISU_2014_14_1_a9 ER -
%0 Journal Article %A E. I. Lomovtseva %A Yu. N. Chelnokov %T Dual matrix and biquaternion methods of solving direct and inverse kinematics problems of manipulators for example Stanford robot arm.~II %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2014 %P 88-95 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a9/ %G ru %F ISU_2014_14_1_a9
E. I. Lomovtseva; Yu. N. Chelnokov. Dual matrix and biquaternion methods of solving direct and inverse kinematics problems of manipulators for example Stanford robot arm.~II. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 88-95. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a9/
[1] Lomovtseva E. I., Chelnokov Yu. N., “Dual Matrix and Biquaternion Methods of Solving Direct and Inverse Kinematics Problems of Manipulators, for Example Stanford Robot Arm. I”, Izv. Saratov. Univ. (N.S.), Ser. Math. Mech. Inform., 13:4 (2013), 82–89
[2] Chelnokov Yu. N., “Biquaternion Solution of the Kinematic Control Problem for the Motion of a Rigid Body and Its Application to the Solution of Inverse Problems of Robot-Manipulator Kinematics”, Mechanics of Solids, 48:1 (2013), 31–46 | DOI
[3] Fu K. S., Gonzalez R. C., Lee C. S. G., Robotics : Control, Sensing, Vision, and Intelligence, McGraw-Hill, Inc., 1987, 580 pp.
[4] Chelnokov Yu. N., Quaternion and Biquaternion Models and Methods of Mechanics of a Rigid Body and their Applications. Geometry of Motion, Saratov Univ. Press, Saratov, 2006, 236 pp.