On an inverse problem for differential operators on hedgehog-type graphs
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 65-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse spectral problem is studied for Sturm–Liouville differential operators on hedgehog-type graphs with generalized matching conditions in the interior vertices and with Dirichlet boundary conditions in the boundary vertices. A uniqueness theorem of recovering potentials from given spectral characteristics is provided, and a constructive solution for the inverse problem is obtained.
@article{ISU_2014_14_1_a6,
     author = {V. A. Yurko},
     title = {On an inverse problem for differential operators on hedgehog-type graphs},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {65--72},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a6/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - On an inverse problem for differential operators on hedgehog-type graphs
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 65
EP  - 72
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a6/
LA  - ru
ID  - ISU_2014_14_1_a6
ER  - 
%0 Journal Article
%A V. A. Yurko
%T On an inverse problem for differential operators on hedgehog-type graphs
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 65-72
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a6/
%G ru
%F ISU_2014_14_1_a6
V. A. Yurko. On an inverse problem for differential operators on hedgehog-type graphs. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 65-72. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a6/

[1] Pokornyj Ju. V., Penkin O. M., Prjadiev V. L., Borovskih A. V., Lazarev K. P., Shabrov S. A., Differential equations on the geometric graphs, Fizmatlit, Moscow, 2004 | MR | Zbl

[2] Langese J. E., Leugering G., Schmidt J. P. G., Modelling, analysis and control of dynamic elastic multi-link structures, Birkhäuser, Boston, 1994 | MR

[3] Belishev M. I., “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20 (2004), 647–672 | DOI | MR | Zbl

[4] Yurko V. A., “Inverse spectral problems for Sturm–Liouville operators on graphs”, Inverse Problems, 21 (2005), 1075–1086 | DOI | MR | Zbl

[5] Yurko V. A., “Inverse problems for Sturm–Liouville operators on graphs with a cycle”, Operators and Matrices, 2:4 (2008), 543–553 | DOI | MR | Zbl

[6] Yurko V. A., “Inverse problem for Sturm–Liouville operators on hedgehog-type graphs”, Math. Notes, 89:3 (2011), 438–449 | DOI | DOI | MR | Zbl

[7] Yurko V. A., “Inverse problems for Sturm–Liouville operators on bush-type graphs”, Inverse Problems, 25:10 (2009), 105008, 14 pp. | DOI | MR | Zbl

[8] Yurko V. A., Introduction to the inverse spectral problems theory, Fizmatlit, Moscow, 2007 | Zbl

[9] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl

[10] Yurko V. A., Quasi-periodic boundary value problems with discontinuity conditions inside the interval, Schriftenreiche des Fachbereichs Mathematik, SM–DU–767, Universität Duisburg–Essen, 2013, 7 pp. | Zbl

[11] Yurko V. A., “Integral transforms connected with discontinuous boundary value problems”, Integral Transforms and Special Functions, 10:2 (2000), 141–164 | DOI | MR | Zbl