Projective and injective descriptions in the complex domain. Duality
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 47-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

Research of a invariant subspaces of a differential operators infinite order in a complex domain generated many issues, related with transition to dual problems. This work devoted overcome these difficulties
@article{ISU_2014_14_1_a5,
     author = {A. B. Shishkin},
     title = {Projective and injective descriptions in the complex domain. {Duality}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {47--65},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a5/}
}
TY  - JOUR
AU  - A. B. Shishkin
TI  - Projective and injective descriptions in the complex domain. Duality
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 47
EP  - 65
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a5/
LA  - ru
ID  - ISU_2014_14_1_a5
ER  - 
%0 Journal Article
%A A. B. Shishkin
%T Projective and injective descriptions in the complex domain. Duality
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 47-65
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a5/
%G ru
%F ISU_2014_14_1_a5
A. B. Shishkin. Projective and injective descriptions in the complex domain. Duality. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 47-65. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a5/

[1] Rellich F., “Spektraltheorie in nichtseparablen Räumen”, Math. Ann., 110 (1934), 342–356 | DOI | MR | Zbl

[2] Schwartz L., “Théorie générale des fonctions moyenne-périodiques”, Ann. of Math. (2), 48 (1947), 857–929 | DOI | MR | Zbl

[3] Tkachenko V. A., “Spectral theory in spaces of analytic functionals for operators generated by multiplication by the independent variable”, Mathematics of the USSR-Sbornik, 40:3 (1981), 387–427 | DOI | MR | Zbl | Zbl

[4] Merzlyakov S. G., “Invariant subspaces of the operator of multiple differentiation”, Mathematical Notes, 33:5 (1983), 361–368 | DOI | MR | Zbl

[5] Shishkin A. B., “Spectral synthesis for an operator generated by multiplication by a power of the independent variable”, Mathematics of the USSR-Sbornik, 73:1 (1992), 211–229 | DOI | MR | Zbl | Zbl

[6] Krasichkov-Ternovskii I. F., “Spectral synthesis in a complex domain for a differential operator with constant coefficients. I: A duality theorem”, Mathematics of the USSR-Sbornik, 74:2 (1993), 309–335 | DOI | MR | Zbl | Zbl

[7] Shishkin A. B., “Spectral synthesis for systems of differential operators with constant coefficients”, Mathematics of the USSR-Sbornik, 194:12 (2003), 1865–1898 | DOI | DOI | MR | Zbl

[8] Shishkin A. B., “Spectral synthesis for systems of differential operators with constant coefficients. Duality theorem”, Mathematics of the USSR-Sbornik, 189:9 (1998), 1423–1440 | DOI | DOI | MR | Zbl

[9] Chernyshev A. N., “Spectral synthesis for infinitely differential operator with constant coefficients. Duality theorem”, Trudi FORA, 2001, no. 6, 75–87

[10] Edwards R. E., Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York, 1965 | MR | Zbl

[11] Gunning R. C., Rossi H., Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965, 317 pp. | MR | MR | Zbl

[12] Hermander L., An introduction to the theory of functions of several complex variables, Mir, Moscow, 1968, 279 pp. | MR

[13] Krasichkov-Ternovskii I. F., “Local description of closed ideals and submodules of analytic functions of one variable. II”, Mathematics of the USSR-Izvestiya, 14:2 (1980), 289–316 | DOI | MR | Zbl | Zbl