@article{ISU_2014_14_1_a2,
author = {L. N. Romakina},
title = {Parabolic parallelograms of the plane~$\widehat H$},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {20--28},
year = {2014},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a2/}
}
L. N. Romakina. Parabolic parallelograms of the plane $\widehat H$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 20-28. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a2/
[1] Romakina L. N., “Simple partitions of a hyperbolic plane of positive curvature”, Sbornik: Mathematics, 203:9 (2012), 1310–1341 | DOI | DOI | MR | Zbl
[2] Romakina L. N., “Fan triangulations of hyperbolic plane positive curvature”, Matematicheskie trudy, 16:2 (2013), 142–168
[3] Romakina L. N., Geometry of the hyperbolic plane of positive curvature. Pt. 2: Transformations and simple splittings, In 4 pt., Saratov Univ. Press, Saratov, 2013, 274 pp.
[4] De Sitter W., “On the Relativity of Inertia. Remarks Concerning Einstein's Latest Hypothesis”, Proc. Royal Acad. Amsterdam, 19:2 (1917), 1217–1225
[5] Akutagawa K., “On space-like hypersurfaces with constant mean curvature in the de Sitter space”, Math. Z., 196 (1987), 13–19 | DOI | MR | Zbl
[6] Montiel S., “An integral inequality for compact space-like hypersurfaces in a de Sitter space and application to the case of constant mean curvature”, Indiana Univ. Math. J., 37 (1988), 909–917 | DOI | MR | Zbl
[7] Cho Yun, “Trigonometry in extended hyperbolic space and extended de Sitter space”, Bull. Korean Math. Soc., 46:6 (2009), 1099–1133 | DOI | MR | Zbl
[8] Asmus Im., “Duality between hyperbolic and de Sitter geometry”, J. of Geometry, 96:1–2 (2009), 11–40 | DOI | MR
[9] Romakina L. N., “Hyperbolic parallelograms of the plane $\widehat H$”, Izv. Sarat. Univ. (N.S.), Ser. Math. Mech. Inform., 13:3 (2013), 45–52
[10] Romakina L. N., “Analogs of a formula of Lobachevsky for angle of parallelism on the hyperbolic plane of positive curvature”, Siberian Electronic Mathematical Reports, 10 (2013), 393–407 Available at: (in Russian) http://semr.math.nsc.ru
[11] Romakina L. N., Geometry of the hyperbolic plane of positive curvature. Pt. 1: Trigonometry, In 4 pt., Saratov Univ. Press, Saratov, 2013, 244 pp.
[12] Efimov N. V., The highest geometry, Nauka, Moscow, 1971, 576 pp. | MR