Parabolic parallelograms of the plane~$\widehat H$
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 20-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Parabolic parallelograms on a Hyperbolic Plane $\widehat H$ with the positive curvature in the Cayley–Klein model are investigated. We conducted their classification, obtained the metric correlations between the measure of angles and the expressions of lengths of the edges through a measure of included angles.
@article{ISU_2014_14_1_a2,
     author = {L. N. Romakina},
     title = {Parabolic parallelograms of the plane~$\widehat H$},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {20--28},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a2/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - Parabolic parallelograms of the plane~$\widehat H$
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 20
EP  - 28
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a2/
LA  - ru
ID  - ISU_2014_14_1_a2
ER  - 
%0 Journal Article
%A L. N. Romakina
%T Parabolic parallelograms of the plane~$\widehat H$
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 20-28
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a2/
%G ru
%F ISU_2014_14_1_a2
L. N. Romakina. Parabolic parallelograms of the plane~$\widehat H$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 20-28. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a2/

[1] Romakina L. N., “Simple partitions of a hyperbolic plane of positive curvature”, Sbornik: Mathematics, 203:9 (2012), 1310–1341 | DOI | DOI | MR | Zbl

[2] Romakina L. N., “Fan triangulations of hyperbolic plane positive curvature”, Matematicheskie trudy, 16:2 (2013), 142–168

[3] Romakina L. N., Geometry of the hyperbolic plane of positive curvature. Pt. 2: Transformations and simple splittings, In 4 pt., Saratov Univ. Press, Saratov, 2013, 274 pp.

[4] De Sitter W., “On the Relativity of Inertia. Remarks Concerning Einstein's Latest Hypothesis”, Proc. Royal Acad. Amsterdam, 19:2 (1917), 1217–1225

[5] Akutagawa K., “On space-like hypersurfaces with constant mean curvature in the de Sitter space”, Math. Z., 196 (1987), 13–19 | DOI | MR | Zbl

[6] Montiel S., “An integral inequality for compact space-like hypersurfaces in a de Sitter space and application to the case of constant mean curvature”, Indiana Univ. Math. J., 37 (1988), 909–917 | DOI | MR | Zbl

[7] Cho Yun, “Trigonometry in extended hyperbolic space and extended de Sitter space”, Bull. Korean Math. Soc., 46:6 (2009), 1099–1133 | DOI | MR | Zbl

[8] Asmus Im., “Duality between hyperbolic and de Sitter geometry”, J. of Geometry, 96:1–2 (2009), 11–40 | DOI | MR

[9] Romakina L. N., “Hyperbolic parallelograms of the plane $\widehat H$”, Izv. Sarat. Univ. (N.S.), Ser. Math. Mech. Inform., 13:3 (2013), 45–52

[10] Romakina L. N., “Analogs of a formula of Lobachevsky for angle of parallelism on the hyperbolic plane of positive curvature”, Siberian Electronic Mathematical Reports, 10 (2013), 393–407 Available at: (in Russian) http://semr.math.nsc.ru

[11] Romakina L. N., Geometry of the hyperbolic plane of positive curvature. Pt. 1: Trigonometry, In 4 pt., Saratov Univ. Press, Saratov, 2013, 244 pp.

[12] Efimov N. V., The highest geometry, Nauka, Moscow, 1971, 576 pp. | MR