The restoration of functional relationships with a~given singularity
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 103-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

Provided methods recovery of functional dependence with a specified discontinuity. Application of the algorithm of building function with given discontinuity is shown. The first method is based on a formal function minimization by random search. The second uses the information content of the data.
@article{ISU_2014_14_1_a12,
     author = {R. T. Faizullin and R. R. Faizullin},
     title = {The restoration of functional relationships with a~given singularity},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {103--108},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a12/}
}
TY  - JOUR
AU  - R. T. Faizullin
AU  - R. R. Faizullin
TI  - The restoration of functional relationships with a~given singularity
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 103
EP  - 108
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a12/
LA  - ru
ID  - ISU_2014_14_1_a12
ER  - 
%0 Journal Article
%A R. T. Faizullin
%A R. R. Faizullin
%T The restoration of functional relationships with a~given singularity
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 103-108
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a12/
%G ru
%F ISU_2014_14_1_a12
R. T. Faizullin; R. R. Faizullin. The restoration of functional relationships with a~given singularity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 103-108. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a12/

[1] Musatov M. V., L'vov A. A., “Model Analysis of the Least Squares Method and Methods to Obtain Estimates”, Bulletin of the Saratov State Technical University, 4:2c (2009), 137–140

[2] Kvetnoj R. N., Bojko A. R., Stepova T. A., “A Multivariate Polynomial Approximation of the Dependencies of the Specified Array of Interval Data on Method Least Squares”, Bulletin of Vinnica Polytechnical Institute, 2011, no. 3, 103–106

[3] Dzhagarov Ju. A., “The Software Module for the Calculation of Approximating Polynomials by the Method of Least Squares”, Program products and systems, 2005, no. 3, 14

[4] Suhanov D. Ja., Suhanov A. Ja., “The Method of Iterative Tuning Multilayer Neural Network Based on the Method of Least Squares”, Reports of Tomsk State University of Control Systems and Radioelectronics, 2004, no. 2, 111–115

[5] Milov V. R., “Adaptive Signal Processing Based on Recursive Algorithm with Regularization of the Least Squares”, Izvestija vysshih uchebnyh zavedenij. Priborostroenie, 46:10 (2003), 11–17

[6] Tao Huasjue, Juj Shenven', Li Pin, “A New Model for the Solution of the Equalization Method of Nonlinear Dynamic Least Squares”, Mining informational and analytical bulletin (scientific and technical journal), 2001, no. 7, 157–160

[7] Brammer K., Ziffling G, Kalman–Bucy filter, Nauka, Moscow, 1982

[8] Ageev A. L., Antonova T. V., “Localization of Discontinuities of the First Kind for the Functions with Bounded Variation”, Proc. of the IMM of Ural department of RAS, 18, no. 1, 2012, 56–68

[9] Loginov K. V., Myznikov A. M., Fajzullin R. T., “Calculation, optimization and control modes of the large hydraulic networks”, Math. modeling, 18:9 (2006), 92–106 | Zbl