Mixed problem for simplest hyperbolic first order equations with involution
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 10-20

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper investigates the mixed problem for the first order differential equation with involution at the potential and with periodic boundary conditions. Using the received refined asymptotic formulas for eigenvalues and eigenfunctions of the corresponding spectral problem, the application of the Fourier method is substantiated. We used techniques, which allow to avoid investigation of the uniform convergence of the series, obtained by term by term differentiation of formal solution on method of Fourier. This allows to get a classical solution with minimal requirements on the initial data of the problem.
@article{ISU_2014_14_1_a1,
     author = {M. Sh. Burlutskaya and A. P. Khromov},
     title = {Mixed problem for simplest hyperbolic first order equations with involution},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {10--20},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a1/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
AU  - A. P. Khromov
TI  - Mixed problem for simplest hyperbolic first order equations with involution
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 10
EP  - 20
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a1/
LA  - ru
ID  - ISU_2014_14_1_a1
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%A A. P. Khromov
%T Mixed problem for simplest hyperbolic first order equations with involution
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 10-20
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a1/
%G ru
%F ISU_2014_14_1_a1
M. Sh. Burlutskaya; A. P. Khromov. Mixed problem for simplest hyperbolic first order equations with involution. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 10-20. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a1/