Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2014_14_1_a1, author = {M. Sh. Burlutskaya and A. P. Khromov}, title = {Mixed problem for simplest hyperbolic first order equations with involution}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {10--20}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a1/} }
TY - JOUR AU - M. Sh. Burlutskaya AU - A. P. Khromov TI - Mixed problem for simplest hyperbolic first order equations with involution JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 10 EP - 20 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a1/ LA - ru ID - ISU_2014_14_1_a1 ER -
%0 Journal Article %A M. Sh. Burlutskaya %A A. P. Khromov %T Mixed problem for simplest hyperbolic first order equations with involution %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2014 %P 10-20 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a1/ %G ru %F ISU_2014_14_1_a1
M. Sh. Burlutskaya; A. P. Khromov. Mixed problem for simplest hyperbolic first order equations with involution. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 10-20. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a1/
[1] Burlutskaya M. Sh., Khromov A. P., “Initial-boundary Value Problems for First Order Hyperbolic Equations with Involution”, Doklady Mathematics, 84:3 (2011), 783–786 | DOI | MR | Zbl
[2] Burlutskaya M. Sh., Khromov A. P., “Substantiation of Fourier Method in Mixed Problem with Involution”, Izv. Sarat. Univ. (N.S.), Ser. Math. Mech. Inform., 11:4 (2011), 3–12
[3] Krylov A. N., On Some Differential Equations of Mathematical Physics Having Application to Technical Problems, GITTL, Moscow–Leningrad, 1950, 368 pp.
[4] Chernyatin V. A., Justification of the Fourier method in the mixed boundary value problem for partial differential equations, Moscow Univ. Press, Moscow, 1991, 112 pp. | MR | Zbl