Well-posedness of the Dirichlet problem in a~cylindrical domain for multidimensional elliptic-parabolic equation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 5-10

Voir la notice de l'article provenant de la source Math-Net.Ru

A unique solvability of classic solutions to Dirichlet's problem in the cylindrical domain for the model multidimensional elliptic-parabolic equation is shown in the article.
@article{ISU_2014_14_1_a0,
     author = {S. A. Aldashev},
     title = {Well-posedness of the {Dirichlet} problem in a~cylindrical domain for multidimensional elliptic-parabolic equation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - Well-posedness of the Dirichlet problem in a~cylindrical domain for multidimensional elliptic-parabolic equation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 5
EP  - 10
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a0/
LA  - ru
ID  - ISU_2014_14_1_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T Well-posedness of the Dirichlet problem in a~cylindrical domain for multidimensional elliptic-parabolic equation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 5-10
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a0/
%G ru
%F ISU_2014_14_1_a0
S. A. Aldashev. Well-posedness of the Dirichlet problem in a~cylindrical domain for multidimensional elliptic-parabolic equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 5-10. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a0/