Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2014_14_1_a0, author = {S. A. Aldashev}, title = {Well-posedness of the {Dirichlet} problem in a~cylindrical domain for multidimensional elliptic-parabolic equation}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {5--10}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a0/} }
TY - JOUR AU - S. A. Aldashev TI - Well-posedness of the Dirichlet problem in a~cylindrical domain for multidimensional elliptic-parabolic equation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 5 EP - 10 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a0/ LA - ru ID - ISU_2014_14_1_a0 ER -
%0 Journal Article %A S. A. Aldashev %T Well-posedness of the Dirichlet problem in a~cylindrical domain for multidimensional elliptic-parabolic equation %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2014 %P 5-10 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a0/ %G ru %F ISU_2014_14_1_a0
S. A. Aldashev. Well-posedness of the Dirichlet problem in a~cylindrical domain for multidimensional elliptic-parabolic equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 5-10. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a0/
[1] Fikera G., “The unified theory of boundary value problems for elliptic-parabolic equations of second order”, Sbornik perevodov. Matematika, 7:6 (1963), 99–121
[2] Oleinik O. A., Radkevich E. V., Equations with nonnegative characteristic form, Moscow Univ. Press, Moscow, 2010, 360 pp.
[3] Mihlin S. G., Higher-dimensional singular integrals and integral equations, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1962, 254 pp. | MR
[4] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Translated from the Russian by A. R. M. Robson and P. Basu. Reprint of the 1963 translation, Dover Publications, Inc., New York, 1990, 765 pp. | MR
[5] Kamke E., Manual of ordinary differential equations, Translated from the German by S. V. Fomin, Third revised edition, Nauka, Moscow, 1965, 703 pp. | MR
[6] Beitmen G., Erdeii A., Higher transcendental functions, Translated from the English by N. Ja. Vilenkin, v. II, Mathematical Reference Library, Bessel functions, parabolic cylinder functions, orthogonal polynomials, Second edition, unrevised, Nauka, Moscow, 1974, 295 pp.
[7] Aldashev S. A., “The correctness of the Dirichlet problem in the cylindric domain for one class of multi-dimensional elliptic equations”, Vestnik, Quart. J. of Novosibirsk State Univ. Ser. Math., mech., inform., 12:1 (2012), 7–13 | Zbl
[8] Aldashev S. A., “The correctness of the Dirichlet problem in the cylindric domain for equation Laplase”, Izv. Saratov. Univ. (N.S.), Ser. Math. Mech. Inform., 12:3 (2012), 3–7