On conditions for distributivity or modularity of congruence lattices of commutative unary algebras
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 52-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the problem of describing unary algebras whose congruence lattices have a given property. By now this problem has been solved for algebras with one unary operation. In the paper it is shown that this problem is much more difficult for arbitrary commutative unary algebras. We give some necessary conditions for such lattices to be distributive or modular. Besides, it is proved here that a lattice of all subsets of a set is isomorphic to the congruence lattice of a suitable connected commutative unary algebra.
@article{ISU_2013_13_4_a6,
     author = {V. K. Kartashov and A. V. Kartashova and V. N. Ponomarjov},
     title = {On conditions for distributivity or modularity of congruence lattices of commutative unary algebras},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {52--57},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a6/}
}
TY  - JOUR
AU  - V. K. Kartashov
AU  - A. V. Kartashova
AU  - V. N. Ponomarjov
TI  - On conditions for distributivity or modularity of congruence lattices of commutative unary algebras
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 52
EP  - 57
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a6/
LA  - ru
ID  - ISU_2013_13_4_a6
ER  - 
%0 Journal Article
%A V. K. Kartashov
%A A. V. Kartashova
%A V. N. Ponomarjov
%T On conditions for distributivity or modularity of congruence lattices of commutative unary algebras
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 52-57
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a6/
%G ru
%F ISU_2013_13_4_a6
V. K. Kartashov; A. V. Kartashova; V. N. Ponomarjov. On conditions for distributivity or modularity of congruence lattices of commutative unary algebras. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 52-57. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a6/

[1] Gratzer G., Shmidt E. T., “Characterizations of congruence lattices of abstract algebras”, Acta Sci. Math., 24 (1963), 34–59 | MR

[2] Mal'tsev A. I., Algebraic Systems, Springer-Verlag, Berlin, 1976, 392 pp. | MR | Zbl

[3] Skornjakov L. A., “Unars”, Coll. Math. Soc. J. Bolyai, 29, Universal Algebra (Esztergom, 1977) (1982), 735–743 | MR

[4] Skornjakov L. A., “Complements in the lattice of congruences”, Mathematics of the USSR-Sbornik, 17:1 (1972), 148–181 | DOI | MR | Zbl

[5] Berman J., “On the congruence lattices of unary algebras”, Proc. Amer. Math. Soc., 36:1 (1972), 34–38 | DOI | MR | Zbl

[6] Egorova D. P., Skornjakov L. A., “On congruence lattice of a unary algebra”, Ordered sets and lattices, 4, Saratov Univ. Press, Saratov, 1977, 28–40 | MR

[7] Egorova D. P., “The congruence lattice of a unary algebra”, Ordered sets and lattices, 5, Saratov Univ. Press, Saratov, 1978, 11–44 | MR

[8] Johnson J., Seifert R. L., A survey of multi-unary algebras, Mimeographed seminar notes, U. C. Berkeley, N.Y., 1967, 16 pp.

[9] Kartashov V. K., “Independent systems of generators and the Hopf property for unary algebras”, Discrete Mathematics and Applications, 18:6 (2008), 625–630 | DOI | DOI | MR | Zbl