On an additive problem with squarefree numbers
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 41-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula for the number of representations of a positive integer $N$ in the form $q_1+q_2+[\alpha q_3]$ is obtained, where $q_1$, $q_2$, $q_3$ are squarefree numbers and $\alpha>1$ is a fixed irrational algebraic number.
@article{ISU_2013_13_4_a4,
     author = {D. V. Goryashin},
     title = {On an additive problem with squarefree numbers},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {41--47},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a4/}
}
TY  - JOUR
AU  - D. V. Goryashin
TI  - On an additive problem with squarefree numbers
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 41
EP  - 47
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a4/
LA  - ru
ID  - ISU_2013_13_4_a4
ER  - 
%0 Journal Article
%A D. V. Goryashin
%T On an additive problem with squarefree numbers
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 41-47
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a4/
%G ru
%F ISU_2013_13_4_a4
D. V. Goryashin. On an additive problem with squarefree numbers. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 41-47. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a4/

[1] Vinogradov I. M., “Representation of an Odd Number as a Sum of Three Primes”, Doklady AN USSR, 15 (1937), 291–294

[2] Fatkina S. Yu., “On the representation of a natural number as a sum of three almost equal terms generated by primes”, Russian Mathematical Surveys, 55:1 (2000), 171–172 | DOI | DOI | MR | Zbl

[3] Evelyn C. J. A., Linfoot E. H., “On a problem in the additive theory of numbers. I”, Math. Z., 30 (1929), 433–448 ; “II”, J. Reine Angew. Math., 164 (1931), 131–140 ; “III”, Math. Z., 34 (1932), 637–644 ; “IV”, Ann. of Math., 32 (1931), 261–270 ; “V”, Quart. J. Math., 3 (1932), 152–160 ; “VI”, Quart. J. Math., 4 (1933), 309–314 | DOI | MR | Zbl | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl | DOI | Zbl

[4] Brüdern J., Perelli A., “Exponential Sums and Additive Problems Involving Square-free Numbers”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 591–613 | MR | Zbl

[5] Arkhipov G. I., Buriev K., Chubarikov V. N., “On the power of a singular set in binary additive problems with prime numbers”, Proc. Steklov Inst. Math., 218 (1997), 23–52 | MR | Zbl

[6] Arkhipov G. I., Chubarikov V. N., “On the exceptional set in a Goldbach-type binary problem”, Dokl. Math., 66:3 (2002), 338—339 | MR | Zbl

[7] Brüdern J., Granville A., Perelli A., Vaughan R. C., Wooley T. D., “On the exponential sum over $k$-free numbers”, Philos. Trans. Roy. Soc. London Ser. A, 356 (1998), 739–761 | DOI | MR | Zbl

[8] Tolev D. I., “On the exponential sum with square-free numbers”, Bull. London Math. Soc., 37 (2005), 827–834 | DOI | MR | Zbl

[9] Schlage-Puchta J. C., “The exponential sum over squarefree integers”, Acta Arith., 115 (2004), 265–268 | DOI | MR | Zbl

[10] Popov O. V., “Arithmetic applications for estimates of Weyl sums of polynomials of increasing degree”, Fundam. Prikl. Mat., 4:2 (1998), 595–640 | MR | Zbl

[11] Goryashin D. V., “Squarefree numbers in the sequence $[\alpha n]$”, Chebyshevskiĭ Sb., 14:3 (2013), 60–66

[12] Arkhipov G. I., Chubarikov V. N., “On the measure of “large arcs” in the Farey partition”, Chebyshevskiĭ Sb., 12:4 (2011), 39–42 | MR | Zbl

[13] Brüdern J., Cook R. J., Perelli A., “The Values of Binary Linear Forms at Prime Arguments”, Sieve Methods, Exponential Sums and Their Applications in Number Theory, Cambridge Univ. Press, Cambridge, 1997, 87–100 | DOI | MR | Zbl