On an additive problem with squarefree numbers
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 41-47

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula for the number of representations of a positive integer $N$ in the form $q_1+q_2+[\alpha q_3]$ is obtained, where $q_1$, $q_2$, $q_3$ are squarefree numbers and $\alpha>1$ is a fixed irrational algebraic number.
@article{ISU_2013_13_4_a4,
     author = {D. V. Goryashin},
     title = {On an additive problem with squarefree numbers},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {41--47},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a4/}
}
TY  - JOUR
AU  - D. V. Goryashin
TI  - On an additive problem with squarefree numbers
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 41
EP  - 47
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a4/
LA  - ru
ID  - ISU_2013_13_4_a4
ER  - 
%0 Journal Article
%A D. V. Goryashin
%T On an additive problem with squarefree numbers
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 41-47
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a4/
%G ru
%F ISU_2013_13_4_a4
D. V. Goryashin. On an additive problem with squarefree numbers. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 41-47. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a4/