Arithmetic properties of generalized Fibonacci sequence and their consequences
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 34-41
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we obtain some arithmetic properties of generalized Fibonacci sequence and consider their applications.
@article{ISU_2013_13_4_a3,
author = {A. N. Vassilyev},
title = {Arithmetic properties of generalized {Fibonacci} sequence and their consequences},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {34--41},
year = {2013},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a3/}
}
TY - JOUR AU - A. N. Vassilyev TI - Arithmetic properties of generalized Fibonacci sequence and their consequences JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 34 EP - 41 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a3/ LA - ru ID - ISU_2013_13_4_a3 ER -
A. N. Vassilyev. Arithmetic properties of generalized Fibonacci sequence and their consequences. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 34-41. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a3/
[1] Vorobiev N. N., Fibonacci Numbers, Birkhauser Verlag, Basel–Boston–Berlin, 2002 | MR | MR | Zbl
[2] Gashkov S. B., Chubarikov V. N., Arithmetics. Algorithms. The Complexity of Computations, Drofa, Moscow, 2005
[3] Romanoff N. P., “Über einige Satze der additiven Zahlentheorie”, Math. Ann., 109 (1934), 668–678 | DOI | MR | Zbl
[4] Erdős P., “On some problems of Bellman and a theorem of Romanoff”, J. Chinese Math. Soc., 1 (1951), 409–421 | MR
[5] Prahar K., Distribution of Prime Numbers, Mir, Moscow, 1967 | MR
[6] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lectures on Mathematical Analysis, Vysshaya Shkola, Moscow, 1999