On the properties of Boolean matrices
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 137-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the partial semigroup of Boolean matrices of various finite sizes under the operations of conjunctive and disjoint multiplication. We estimate the possible number of vectors in the row basis and column basis. The subminimal, subsubminimal and submaximal in general sense $\mathscr D$-classes are found. The properties of secondary idempotents are investigated. A conjecture of recursive construction of the reduced matrices is suggested.
@article{ISU_2013_13_4_a24,
     author = {O. O. Shchekaturova and V. A. Yaroshevich},
     title = {On the properties of {Boolean} matrices},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {137--142},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a24/}
}
TY  - JOUR
AU  - O. O. Shchekaturova
AU  - V. A. Yaroshevich
TI  - On the properties of Boolean matrices
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 137
EP  - 142
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a24/
LA  - ru
ID  - ISU_2013_13_4_a24
ER  - 
%0 Journal Article
%A O. O. Shchekaturova
%A V. A. Yaroshevich
%T On the properties of Boolean matrices
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 137-142
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a24/
%G ru
%F ISU_2013_13_4_a24
O. O. Shchekaturova; V. A. Yaroshevich. On the properties of Boolean matrices. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 137-142. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a24/

[1] Kim Ki Hang, Boolean Matrix Theory and Applications, Marcel Dekker, N.Y., 1982, 288 pp. | MR | Zbl

[2] Butler K., “Binary relations”, Recent Trends in Graph Theory, 186 (1971), 25–47 | DOI | MR | Zbl

[3] Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups, v. 1, Mathematical Surveys and Monogrphs, AMS, Providence, R.I., 1961 | DOI | MR | Zbl

[4] Poplavski V. B., “On Applications of Associativity of Dual Compositions in the Algebra of Boolean Matrices”, Journal of Math. Sciences, 191:5 (2013), 718–725 | DOI | MR | Zbl