On a number of prime divisors of an integer with bounded multipleness
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 129-133
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article generalisations of numeric functions related to a number of prime divisors of a given number are investigated. Upper and lower limit values of a number of prime divisors of a bounded power of integer are obtained.
@article{ISU_2013_13_4_a22,
author = {G. V. Fjodorov},
title = {On a~number of prime divisors of an integer with bounded multipleness},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {129--133},
year = {2013},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a22/}
}
TY - JOUR AU - G. V. Fjodorov TI - On a number of prime divisors of an integer with bounded multipleness JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 129 EP - 133 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a22/ LA - ru ID - ISU_2013_13_4_a22 ER -
G. V. Fjodorov. On a number of prime divisors of an integer with bounded multipleness. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 129-133. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a22/
[1] Hardy G. H., Ramanujan S., “The normal number of prime factors of a number $n$”, Quart. J. Math., 48 (1917), 76–92 | Zbl
[2] Tanenbaum G., Mendes France M., The prime numbers and their distribution, Amer. Math. Soc., Providence, RI, 2000, 115 pp. | MR
[3] Fröberg C.-E., “On the prime zeta function”, BIT, 8 (1968), 187–202 | DOI | MR | Zbl
[4] Fedorov G. V., “The upper limit value of the divisor function with growing dimension”, Doklady Math., 88:2 (2013), 529–531 | DOI | DOI | Zbl