Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_4_a22, author = {G. V. Fjodorov}, title = {On a~number of prime divisors of an integer with bounded multipleness}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {129--133}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a22/} }
TY - JOUR AU - G. V. Fjodorov TI - On a~number of prime divisors of an integer with bounded multipleness JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 129 EP - 133 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a22/ LA - ru ID - ISU_2013_13_4_a22 ER -
%0 Journal Article %A G. V. Fjodorov %T On a~number of prime divisors of an integer with bounded multipleness %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 129-133 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a22/ %G ru %F ISU_2013_13_4_a22
G. V. Fjodorov. On a~number of prime divisors of an integer with bounded multipleness. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 129-133. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a22/
[1] Hardy G. H., Ramanujan S., “The normal number of prime factors of a number $n$”, Quart. J. Math., 48 (1917), 76–92 | Zbl
[2] Tanenbaum G., Mendes France M., The prime numbers and their distribution, Amer. Math. Soc., Providence, RI, 2000, 115 pp. | MR
[3] Fröberg C.-E., “On the prime zeta function”, BIT, 8 (1968), 187–202 | DOI | MR | Zbl
[4] Fedorov G. V., “The upper limit value of the divisor function with growing dimension”, Doklady Math., 88:2 (2013), 529–531 | DOI | DOI | Zbl