New properties of varieties of Leibnitz algebras
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 124-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to two new results concerning varieties of Leibnitz algebras over a field of the zero characteristic. Here is proved the sufficient condition for a variety of Leibnitz algebras to have a finite colength. Here is also defined the basis of identities and the basis of multilinear part of variety $\widetilde{\mathbf V}_3$.
@article{ISU_2013_13_4_a21,
     author = {T. V. Skoraya and A. V. Svetsova},
     title = {New properties of varieties of {Leibnitz} algebras},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {124--129},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a21/}
}
TY  - JOUR
AU  - T. V. Skoraya
AU  - A. V. Svetsova
TI  - New properties of varieties of Leibnitz algebras
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 124
EP  - 129
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a21/
LA  - ru
ID  - ISU_2013_13_4_a21
ER  - 
%0 Journal Article
%A T. V. Skoraya
%A A. V. Svetsova
%T New properties of varieties of Leibnitz algebras
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 124-129
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a21/
%G ru
%F ISU_2013_13_4_a21
T. V. Skoraya; A. V. Svetsova. New properties of varieties of Leibnitz algebras. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 124-129. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a21/

[1] Giambruno A., Zaicev M., Polynomail identities and Asymptotic Methods, Mathematical Surveys and Monographs, 122, AMS, Providence, RI, 2005, 352 pp. | DOI | MR | Zbl

[2] Blokh A. M., “A generalization of the concept of a Lie algebra”, Dokl. Akad. Nauk USSR, 18:3 (1965), 471–473

[3] Ratseev S. M., “The estimation of growth og variety of Leibnitz algebras with a nilpotent commutant”, Vestnik of the Samara state university, 2006, no. 6(46), 70–77 | MR | Zbl

[4] Mishchenko S. P., Cherevatenko O. I., “Necessary and suffcient conditions for a variety of Leibniz algebras to have polynomial growth”, Fundamental applied mathematics, 12:8 (2006), 207–215 | MR | Zbl

[5] Mishchenko S. P., Zaicev M. V., “Colength of varieties of linear algebras”, Math. Notes, 79:4 (2006), 511–517 | DOI | MR | Zbl

[6] Abanina L. E., Mishchenko S. P., “Some varieties of Leibnitz algebras”, Mathematical methods and appendices, Works of the ninth mathematical readings MSSU, 2002, 95–99

[7] Skoraya T. V., “Structure of multilinear part of variety $\widetilde{\mathbf V}_3$”, Scientific notes of the OSU, 2012, no. 6(2), 203–212 (in Russian)

[8] Mishchenko S. P., Shishkina T. V., “On almost polynomial growth varieties of Leibniz algebras with the identity $x(y(zt))=0$”, Vestnik of the Moscow university, Ser. 1. Mathematics and mechanics, 2010, no. 3, 18–23