Solution of partial differential equations by the Ryabenky method
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 120-124
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper discusses the generalizations of the method Ryabenky approximate solutions of partial differential equations to the case of the use of arbitrary distributions Parallelepipedal nets for integral lattices.
@article{ISU_2013_13_4_a20,
author = {A. V. Rodionov},
title = {Solution of partial differential equations by the {Ryabenky} method},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {120--124},
year = {2013},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a20/}
}
TY - JOUR AU - A. V. Rodionov TI - Solution of partial differential equations by the Ryabenky method JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 120 EP - 124 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a20/ LA - ru ID - ISU_2013_13_4_a20 ER -
A. V. Rodionov. Solution of partial differential equations by the Ryabenky method. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 120-124. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a20/
[1] Ryabenky V. S., “A method for obtaining difference schemes andthe use of nets teoretikochislovyh for solutionthe finite difference method”, Tr. Math. Inst. V. A. Steklov, 60, 1961, 232–237 | MR | Zbl
[2] Rodionov A. V., “On the method of V. S. Ryabenky–N. M. Korobov approximate solutions of partial differential equations”, Chebyshevsky collection, 10:3 (2009), 82–96 | MR