Solution of partial differential equations by the Ryabenky method
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 120-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the generalizations of the method Ryabenky approximate solutions of partial differential equations to the case of the use of arbitrary distributions Parallelepipedal nets for integral lattices.
@article{ISU_2013_13_4_a20,
     author = {A. V. Rodionov},
     title = {Solution of partial differential equations by the {Ryabenky} method},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {120--124},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a20/}
}
TY  - JOUR
AU  - A. V. Rodionov
TI  - Solution of partial differential equations by the Ryabenky method
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 120
EP  - 124
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a20/
LA  - ru
ID  - ISU_2013_13_4_a20
ER  - 
%0 Journal Article
%A A. V. Rodionov
%T Solution of partial differential equations by the Ryabenky method
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 120-124
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a20/
%G ru
%F ISU_2013_13_4_a20
A. V. Rodionov. Solution of partial differential equations by the Ryabenky method. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 120-124. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a20/

[1] Ryabenky V. S., “A method for obtaining difference schemes andthe use of nets teoretikochislovyh for solutionthe finite difference method”, Tr. Math. Inst. V. A. Steklov, 60, 1961, 232–237 | MR | Zbl

[2] Rodionov A. V., “On the method of V. S. Ryabenky–N. M. Korobov approximate solutions of partial differential equations”, Chebyshevsky collection, 10:3 (2009), 82–96 | MR