Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_4_a18, author = {Z. Kh. Rakhmonov}, title = {Distribution of values of {Dirichlet} characters in the sequence of shifted primes}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {113--117}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a18/} }
TY - JOUR AU - Z. Kh. Rakhmonov TI - Distribution of values of Dirichlet characters in the sequence of shifted primes JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 113 EP - 117 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a18/ LA - ru ID - ISU_2013_13_4_a18 ER -
%0 Journal Article %A Z. Kh. Rakhmonov %T Distribution of values of Dirichlet characters in the sequence of shifted primes %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 113-117 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a18/ %G ru %F ISU_2013_13_4_a18
Z. Kh. Rakhmonov. Distribution of values of Dirichlet characters in the sequence of shifted primes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 113-117. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a18/
[1] Vinogradov I. M., “On the distribution of quadratic rests and non-rests of the form $p+k$ to a prime modulus”, Rec. Math. Moscow, N. Ser., 3(45):2 (1938), 311–319 | Zbl
[2] Vinogradow I. M., “An improvement of the estimation of sums with primes”, Bull. Acad. Sci. URSS. Ser. Math., 7:1 (1943), 17–34 | MR | Zbl
[3] Vinogradov I. M., “New approach to the estimation of a sum of values of $\chi(p+k)$”, Izvestiya Akad. Nauk SSSR. Ser. Mat., 16 (1952), 197–210 | MR | Zbl
[4] Vinogradov I. M., “Improvement of an estimate for the sum of the values $\chi(p+k)$”, Izvestiya Akad. Nauk SSSR. Ser. Mat., 17 (1953), 285–290 | MR | Zbl
[5] Vinogradov I. M., “An estimate for a certain sum extended over the primes of an arithmetic progression”, Izv. Akad. Nauk SSSR Ser. Mat., 30:3 (1966), 481–496 (Russian) | MR | Zbl
[6] Karatsuba A. A., “Sums of characters, and primitive roots, in finite fields”, Doklady Akademii Nauk SSSR, 180:6 (1968), 1287–1289 | Zbl
[7] Karatsuba A. A., “Estimates of character sums”, Math. USSR-Izv., 4:1 (1970), 19–29 | DOI | MR | Zbl
[8] Karatsuba A. A., “Sums of characters over prime numbers”, Math. USSR-Izv., 4:2 (1970), 303–326 | DOI | MR | Zbl
[9] Rakhmonov Z. Kh., “On the distribution of values of Dirichlet characters”, Rus. Math. Surv., 41:1 (1986), 237–238 | DOI | MR | Zbl | Zbl
[10] Rakhmonov Z. Kh., “Estimation of the sum of characters with primes”, Dokl. Akad. Nauk Tadzhik. SSR, 29:1 (1986), 16–20 | MR | Zbl
[11] Rakhmonov Z. Kh., “On the distribution of the values of Dirichlet characters and their applications”, Proc. Steklov Inst. Math., 207, no. 6, 1995, 263–272 | MR | Zbl
[12] Fridlander Dzh. B., Gong K., Shparlinskii I. E., “Character sums over shifted primes”, Math. Notes, 88:3–4 (2010), 585–598 | DOI | DOI | MR
[13] Rakhmonov Z. Kh., “A theorem on the mean value of $\psi(x,\chi)$ and its applications”, Russian Academy of Sciences. Izvestiya Mathematics, 43:1 (1994), 49–64 | DOI | MR | Zbl
[14] Rakhmonov Z. Kh., “A theorem on the mean-value of Chebyshev functions”, Russian Academy of Sciences. Izvestiya Mathematics, 44:3 (1995), 555–569 | DOI | MR | Zbl
[15] Vinogradov A. I., “On numbers with small prime divisors”, Dokl. Akad. Nauk SSSR, 109:4 (1956), 683–686 | MR | Zbl
[16] Burgess D. A., “On character sum estimate with $r=3$”, J. London Math. Soc., 33:2 (1986), 219–226 | DOI | MR | Zbl