On heredity of formations of monounary algebras
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 108-113
Cet article a éte moissonné depuis la source Math-Net.Ru
A class of algebraic systems is said to be a formation if it is closed under homomorphic images and finite subdirect products. It has been proven that any formation of at most countable monounary algebras is a hereditary formation.
@article{ISU_2013_13_4_a17,
author = {A. L. Rasstrigin},
title = {On heredity of formations of monounary algebras},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {108--113},
year = {2013},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a17/}
}
A. L. Rasstrigin. On heredity of formations of monounary algebras. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 108-113. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a17/
[1] Shemetkov L. A., Skiba A. N., Formations of algebraic systems, Nauka, Moscow, 1989, 256 pp. | MR | Zbl
[2] Rasstrigin A. L., “Formations of finite monounary algebras”, Chebyshevskii Sbornik, 12:2(38) (2011), 102–109 | MR | Zbl
[3] Mal'tsev A. I., Algebraic systems, Nauka, Moscow, 1970 | MR | Zbl
[4] Kartashov V. K., “Quasivarieties of unars”, Math. Notes, 27:1 (1980), 5–12 | DOI | MR | Zbl | Zbl
[5] Wenzel G. H., “Subdirect irreducibility and equational compactness in unary algebras $\langle A;f\rangle$”, Archiv der Mathematik, 21 (1970), 256–264 | DOI | MR | Zbl