On heredity of formations of monounary algebras
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 108-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of algebraic systems is said to be a formation if it is closed under homomorphic images and finite subdirect products. It has been proven that any formation of at most countable monounary algebras is a hereditary formation.
@article{ISU_2013_13_4_a17,
     author = {A. L. Rasstrigin},
     title = {On heredity of formations of monounary algebras},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {108--113},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a17/}
}
TY  - JOUR
AU  - A. L. Rasstrigin
TI  - On heredity of formations of monounary algebras
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 108
EP  - 113
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a17/
LA  - ru
ID  - ISU_2013_13_4_a17
ER  - 
%0 Journal Article
%A A. L. Rasstrigin
%T On heredity of formations of monounary algebras
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 108-113
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a17/
%G ru
%F ISU_2013_13_4_a17
A. L. Rasstrigin. On heredity of formations of monounary algebras. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 108-113. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a17/

[1] Shemetkov L. A., Skiba A. N., Formations of algebraic systems, Nauka, Moscow, 1989, 256 pp. | MR | Zbl

[2] Rasstrigin A. L., “Formations of finite monounary algebras”, Chebyshevskii Sbornik, 12:2(38) (2011), 102–109 | MR | Zbl

[3] Mal'tsev A. I., Algebraic systems, Nauka, Moscow, 1970 | MR | Zbl

[4] Kartashov V. K., “Quasivarieties of unars”, Math. Notes, 27:1 (1980), 5–12 | DOI | MR | Zbl | Zbl

[5] Wenzel G. H., “Subdirect irreducibility and equational compactness in unary algebras $\langle A;f\rangle$”, Archiv der Mathematik, 21 (1970), 256–264 | DOI | MR | Zbl