On heredity of formations of monounary algebras
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 108-113

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of algebraic systems is said to be a formation if it is closed under homomorphic images and finite subdirect products. It has been proven that any formation of at most countable monounary algebras is a hereditary formation.
@article{ISU_2013_13_4_a17,
     author = {A. L. Rasstrigin},
     title = {On heredity of formations of monounary algebras},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {108--113},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a17/}
}
TY  - JOUR
AU  - A. L. Rasstrigin
TI  - On heredity of formations of monounary algebras
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 108
EP  - 113
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a17/
LA  - ru
ID  - ISU_2013_13_4_a17
ER  - 
%0 Journal Article
%A A. L. Rasstrigin
%T On heredity of formations of monounary algebras
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 108-113
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a17/
%G ru
%F ISU_2013_13_4_a17
A. L. Rasstrigin. On heredity of formations of monounary algebras. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 108-113. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a17/