About generating set of the invariant subalgebra of free restricted Lie algebra
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 93-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $L=L(X)$ is the free Lie p-algebra of finite rank $k$ with free generating set $X=\{x_1,\dots,x_k\}$ on a field of positive characteristic. Let $G$ is nontrivial finite group of homogeneous automorphisms $L(X)$. Our main purpose to prove that $L^G$ subalgebra of invariants is is infinitely generated. We have more strongly result. Let $Y=\cup_{n=1}^\infty Y_n$ be homogeneous free generating set for the algebra of invariants $L^G$, elements $Y_n$ are of degree $n$ relatively $X$, $n\ge1$. Consider the corresponding generating function $\mathscr H(Y,t)=\sum_{n=1}^\infty|Y_n|t^n$. In our case of free Lie restricted algebras, we prove, that series $\mathscr H(Y,t)$ has a radius of convergence $1/k$ and describe its growth at $t\to1/k-0$. As a result we obtain that the sequence $|Y_n|$, $n\ge1$, has exponential growth.
@article{ISU_2013_13_4_a15,
     author = {V. M. Petrogradsky and I. A. Subbotin},
     title = {About generating set of the invariant subalgebra of free restricted {Lie} algebra},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {93--98},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a15/}
}
TY  - JOUR
AU  - V. M. Petrogradsky
AU  - I. A. Subbotin
TI  - About generating set of the invariant subalgebra of free restricted Lie algebra
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 93
EP  - 98
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a15/
LA  - ru
ID  - ISU_2013_13_4_a15
ER  - 
%0 Journal Article
%A V. M. Petrogradsky
%A I. A. Subbotin
%T About generating set of the invariant subalgebra of free restricted Lie algebra
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 93-98
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a15/
%G ru
%F ISU_2013_13_4_a15
V. M. Petrogradsky; I. A. Subbotin. About generating set of the invariant subalgebra of free restricted Lie algebra. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 93-98. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a15/

[1] Shirshov A. I., “Subalgebras of free Lie algebra”, Mat. sb., 1953, no. 33(75), 441–452 | MR | Zbl

[2] Witt E., “Die Unterringe der freien Lieschen Ringe”, Math. Z., 64 (1956), 195–216 | DOI | MR | Zbl

[3] Bryant R. M., “On the fixed points of a finite group acting on a free Lie algebra”, J. London Math. Soc., 43:2 (1991), 215–224 | DOI | MR | Zbl

[4] Petrogradsky V. M., Smirnov A. A., “On invariants of modular free Lie algebras”, J. Math. Sci., 166:6 (2010), 767–772 | DOI | MR | Zbl

[5] Jacobson N., Lie algebras, Interscience, N.Y., 1962, 332 pp. | MR | Zbl

[6] Bahturin Yu. A., Identical Relations in Lie Algebras, VNU Sciens Press BV, Netherlannds, 1987, 309 pp. | MR | MR | Zbl

[7] Petrogradsky V. M., “On Witt's formula and invariants for free Lie superalgebras”, Formal power series and algebraic combinatorics (Moscow, 2000), Springer, 2000, 543–551 | DOI | MR | Zbl

[8] Bahturin Yu. A., Mikhalev A. A., Petrogradsky V. M., Zaicev M. V., Infinite dimensional Lie superalgebras, de Gruyter Exp. Math., 7, de Gruyter, Berlin, 1992, 250 pp. | MR

[9] Petrogradsky V. M., “Witt's formula for restricted Lie algebras”, Adv. Appl. Math., 30 (2003), 219–227 | DOI | MR | Zbl

[10] Petrogradsky V. M., “Asymptotic problems in algebraic structures”, Limit of graphs in group theory and computer science, eds. G. Arzhantseva, A. Valette, EPFL Press, Lausanne, 2009, 77–108 | MR | Zbl

[11] Markushevich A. L., Markushevich L. A., Introduction to the theory of analytic functions, Prosveshchenie, Moscow, 1977, 320 pp. | MR | Zbl

[12] Petrogradsky V. M., “On invariants of the action of a finite group on a free lie algebra”, Sib. Math. J., 41:4 (2000), 763–770 | DOI | MR | Zbl

[13] Petrogradsky V. M., “Characters and invariants for free Lie superalgebras”, St. Petersburg Math. J., 13:1 (2002), 107–122 | MR | Zbl