About generating set of the invariant subalgebra of free restricted Lie algebra
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 93-98

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $L=L(X)$ is the free Lie p-algebra of finite rank $k$ with free generating set $X=\{x_1,\dots,x_k\}$ on a field of positive characteristic. Let $G$ is nontrivial finite group of homogeneous automorphisms $L(X)$. Our main purpose to prove that $L^G$ subalgebra of invariants is is infinitely generated. We have more strongly result. Let $Y=\cup_{n=1}^\infty Y_n$ be homogeneous free generating set for the algebra of invariants $L^G$, elements $Y_n$ are of degree $n$ relatively $X$, $n\ge1$. Consider the corresponding generating function $\mathscr H(Y,t)=\sum_{n=1}^\infty|Y_n|t^n$. In our case of free Lie restricted algebras, we prove, that series $\mathscr H(Y,t)$ has a radius of convergence $1/k$ and describe its growth at $t\to1/k-0$. As a result we obtain that the sequence $|Y_n|$, $n\ge1$, has exponential growth.
@article{ISU_2013_13_4_a15,
     author = {V. M. Petrogradsky and I. A. Subbotin},
     title = {About generating set of the invariant subalgebra of free restricted {Lie} algebra},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {93--98},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a15/}
}
TY  - JOUR
AU  - V. M. Petrogradsky
AU  - I. A. Subbotin
TI  - About generating set of the invariant subalgebra of free restricted Lie algebra
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 93
EP  - 98
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a15/
LA  - ru
ID  - ISU_2013_13_4_a15
ER  - 
%0 Journal Article
%A V. M. Petrogradsky
%A I. A. Subbotin
%T About generating set of the invariant subalgebra of free restricted Lie algebra
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 93-98
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a15/
%G ru
%F ISU_2013_13_4_a15
V. M. Petrogradsky; I. A. Subbotin. About generating set of the invariant subalgebra of free restricted Lie algebra. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 93-98. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a15/