Parameters recovering algorithm for one class of irrationalities
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 89-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we study one class of irrationalities which may be defined as covergent series with rational coefficients. This class contain a lot of well known constants such as $\ln2$, $\pi$, e.t.c. We consider the problem of determination parameters of rational coefficients by rational approximation of irrationality. We deduced the lower and upper bounds and present an algorithm for determination of unknown parameters. Also, we present some results of practical calculations.
@article{ISU_2013_13_4_a14,
     author = {A. Yu. Nesterenko},
     title = {Parameters recovering algorithm for one class of irrationalities},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {89--93},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a14/}
}
TY  - JOUR
AU  - A. Yu. Nesterenko
TI  - Parameters recovering algorithm for one class of irrationalities
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 89
EP  - 93
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a14/
LA  - ru
ID  - ISU_2013_13_4_a14
ER  - 
%0 Journal Article
%A A. Yu. Nesterenko
%T Parameters recovering algorithm for one class of irrationalities
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 89-93
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a14/
%G ru
%F ISU_2013_13_4_a14
A. Yu. Nesterenko. Parameters recovering algorithm for one class of irrationalities. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 89-93. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a14/

[1] Bayley D. H., A Compendium of BBP-type Formulas for Mathematical Constants, Preprint. URL: , April, 2013, (data obrascheniya 10.09.2013) http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf

[2] Nesterenko A. Yu., “On the statistical properties of some transcendetal numbers”, Scientific notes of the Oryol State University, 2012, no. 6, pt. 2, 170–176

[3] Ferguson H. R. P., Bailey D. H., Arno S., “Analysis of PSLQ, An Integer Relation Finding Algorithm”, Math. of Computation, 68:225 (1999), 351–369 | DOI | MR | Zbl