Approximation polynomials and Dirichlet $L$-functions behavior in the critical strip
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 80-83

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a sequence of Dirichlet polynomials that approximate Dirichlet $L$-functions is constructed. This allows to calculate zeros of $L$-functions in an effective way and make an assumptions about Dirichlet $L$-function behavior in the critical strip.
@article{ISU_2013_13_4_a12,
     author = {O. A. Matveeva},
     title = {Approximation polynomials and {Dirichlet} $L$-functions behavior in the critical strip},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {80--83},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a12/}
}
TY  - JOUR
AU  - O. A. Matveeva
TI  - Approximation polynomials and Dirichlet $L$-functions behavior in the critical strip
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 80
EP  - 83
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a12/
LA  - ru
ID  - ISU_2013_13_4_a12
ER  - 
%0 Journal Article
%A O. A. Matveeva
%T Approximation polynomials and Dirichlet $L$-functions behavior in the critical strip
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 80-83
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a12/
%G ru
%F ISU_2013_13_4_a12
O. A. Matveeva. Approximation polynomials and Dirichlet $L$-functions behavior in the critical strip. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 80-83. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a12/