Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_4_a12, author = {O. A. Matveeva}, title = {Approximation polynomials and {Dirichlet} $L$-functions behavior in the critical strip}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {80--83}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a12/} }
TY - JOUR AU - O. A. Matveeva TI - Approximation polynomials and Dirichlet $L$-functions behavior in the critical strip JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 80 EP - 83 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a12/ LA - ru ID - ISU_2013_13_4_a12 ER -
%0 Journal Article %A O. A. Matveeva %T Approximation polynomials and Dirichlet $L$-functions behavior in the critical strip %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 80-83 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a12/ %G ru %F ISU_2013_13_4_a12
O. A. Matveeva. Approximation polynomials and Dirichlet $L$-functions behavior in the critical strip. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 80-83. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a12/