Approximation polynomials and Dirichlet $L$-functions behavior in the critical strip
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 80-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a sequence of Dirichlet polynomials that approximate Dirichlet $L$-functions is constructed. This allows to calculate zeros of $L$-functions in an effective way and make an assumptions about Dirichlet $L$-function behavior in the critical strip.
@article{ISU_2013_13_4_a12,
     author = {O. A. Matveeva},
     title = {Approximation polynomials and {Dirichlet} $L$-functions behavior in the critical strip},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {80--83},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a12/}
}
TY  - JOUR
AU  - O. A. Matveeva
TI  - Approximation polynomials and Dirichlet $L$-functions behavior in the critical strip
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 80
EP  - 83
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a12/
LA  - ru
ID  - ISU_2013_13_4_a12
ER  - 
%0 Journal Article
%A O. A. Matveeva
%T Approximation polynomials and Dirichlet $L$-functions behavior in the critical strip
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 80-83
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a12/
%G ru
%F ISU_2013_13_4_a12
O. A. Matveeva. Approximation polynomials and Dirichlet $L$-functions behavior in the critical strip. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 80-83. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a12/

[1] Kuznetsov V. N., “Analog of Szegö's theorem for a class of Dirichlet series”, Math. Notes, 36:6 (1984), 903–907 | DOI | MR | Zbl

[2] Korotkov A. E., Matveeva O. A., “On a computing algorithm of calculation of zeroes of the integral functions”, Nauch. vedomosti Belgorodskogo gosudarstvennogo un-ta. Ser. Matematika. Fizika, 24:17 (2011), 47–53

[3] Voronin S. M., Karacuba A. A., The Riemann Zeta-Function, Fizmatlit, Moscow, 1994, 376 pp. | MR | Zbl

[4] Kuznetsov V. N., Vodolazov A. M., “Approximated criterion for periodicity of the finitely valued functions of a natural argument”, Issledovanija po algebre, teorii chisel, funkc. analizu i smezhnym voprosam: Mezhvuz. sb. nauch. tr., 2, Saratov Univ. Press, Saratov, 2003, 2–11

[5] Titchmarsh E. K., Function theory, Nauka, Moscow, 1980, 464 pp. | MR | Zbl

[6] Prahar K., Distribution of primes, Mir, Moscow, 1967, 511 pp. | MR

[7] Levin B. Ja., Distribution of roots of integer functions, Izd-vo tehniko-teoretich. literat., Moscow, 1956, 632 pp.

[8] Turan P., “On a new results in number theory”, Problemy analiticheskoj teorii chisel, Mir, Moscow, 1975, 118–142 | MR

[9] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, Moscow, 1930, 409 pp.