Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_4_a11, author = {V. A. Matveev and O. A. Matveeva}, title = {On a~particular equivalent of extended {Riemann} hypothesis for {Dirichlet} $L$-functions on numerical fields}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {76--79}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a11/} }
TY - JOUR AU - V. A. Matveev AU - O. A. Matveeva TI - On a~particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 76 EP - 79 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a11/ LA - ru ID - ISU_2013_13_4_a11 ER -
%0 Journal Article %A V. A. Matveev %A O. A. Matveeva %T On a~particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 76-79 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a11/ %G ru %F ISU_2013_13_4_a11
V. A. Matveev; O. A. Matveeva. On a~particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 76-79. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a11/