On a~particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 76-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

A condition on summatory function over a set of prime ideals for Dirichlet $L$-functions on numerical fields is obtained. This condition is equivalent to extended Riemann hypothesis. Analytical properties of Euler products associated with this equivalent are studied.
@article{ISU_2013_13_4_a11,
     author = {V. A. Matveev and O. A. Matveeva},
     title = {On a~particular equivalent of extended {Riemann} hypothesis for {Dirichlet} $L$-functions on numerical fields},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {76--79},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a11/}
}
TY  - JOUR
AU  - V. A. Matveev
AU  - O. A. Matveeva
TI  - On a~particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 76
EP  - 79
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a11/
LA  - ru
ID  - ISU_2013_13_4_a11
ER  - 
%0 Journal Article
%A V. A. Matveev
%A O. A. Matveeva
%T On a~particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 76-79
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a11/
%G ru
%F ISU_2013_13_4_a11
V. A. Matveev; O. A. Matveeva. On a~particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 76-79. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a11/

[1] Hardy G. H., Littlewood J. E., “Some problems of ‘partitio numerorum’; III: On the expression of a number as a sum of primes”, Acta Mathematica, 44 (1923), 1–70 | DOI | MR | Zbl

[2] Kheil'bronn Kh., “$\zeta$-functions and $L$-functions”, Algebraic number theory, Mir, Moscow, 1969, 310–346 | MR