On a particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 76-79
Cet article a éte moissonné depuis la source Math-Net.Ru
A condition on summatory function over a set of prime ideals for Dirichlet $L$-functions on numerical fields is obtained. This condition is equivalent to extended Riemann hypothesis. Analytical properties of Euler products associated with this equivalent are studied.
@article{ISU_2013_13_4_a11,
author = {V. A. Matveev and O. A. Matveeva},
title = {On a~particular equivalent of extended {Riemann} hypothesis for {Dirichlet} $L$-functions on numerical fields},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {76--79},
year = {2013},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a11/}
}
TY - JOUR AU - V. A. Matveev AU - O. A. Matveeva TI - On a particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 76 EP - 79 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a11/ LA - ru ID - ISU_2013_13_4_a11 ER -
%0 Journal Article %A V. A. Matveev %A O. A. Matveeva %T On a particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 76-79 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a11/ %G ru %F ISU_2013_13_4_a11
V. A. Matveev; O. A. Matveeva. On a particular equivalent of extended Riemann hypothesis for Dirichlet $L$-functions on numerical fields. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 76-79. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a11/