Semisimple graded rings
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 23-28

Voir la notice de l'article provenant de la source Math-Net.Ru

The graded version of Wedderburn–Artin theorem is obtained. It gives description of semisimple $G$-graded ring for arbitrary group $G$. Homological classification of graded semisimple rings is given.
@article{ISU_2013_13_4_a1,
     author = {I. N. Balaba and E. N. Krasnova},
     title = {Semisimple graded rings},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {23--28},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a1/}
}
TY  - JOUR
AU  - I. N. Balaba
AU  - E. N. Krasnova
TI  - Semisimple graded rings
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 23
EP  - 28
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a1/
LA  - ru
ID  - ISU_2013_13_4_a1
ER  - 
%0 Journal Article
%A I. N. Balaba
%A E. N. Krasnova
%T Semisimple graded rings
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 23-28
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a1/
%G ru
%F ISU_2013_13_4_a1
I. N. Balaba; E. N. Krasnova. Semisimple graded rings. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 23-28. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a1/