Stress-strain state of an elliptical cylinder with an ellipsoidal bottoms of dissimilar materials based FEM
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 65-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithm of calculating the construction in the form of an elliptical cylinder with ellipsoidal bottom of different materials based on the finite element method with the use of scalar and vector fields interpolating movements is described. As part of the sampling using rectangular curved finite elements with eighteen degrees of freedom in the node. Calculations of a circular cylinder with an articulated ellipsoid of rotation the verification of the algorithm and shows its effectiveness.
@article{ISU_2013_13_3_a8,
     author = {J. V. Klochkov and A. P. Nikolaev and T. A. Kiseleva},
     title = {Stress-strain state of an elliptical cylinder with an ellipsoidal bottoms of dissimilar materials based {FEM}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {65--70},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a8/}
}
TY  - JOUR
AU  - J. V. Klochkov
AU  - A. P. Nikolaev
AU  - T. A. Kiseleva
TI  - Stress-strain state of an elliptical cylinder with an ellipsoidal bottoms of dissimilar materials based FEM
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 65
EP  - 70
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a8/
LA  - ru
ID  - ISU_2013_13_3_a8
ER  - 
%0 Journal Article
%A J. V. Klochkov
%A A. P. Nikolaev
%A T. A. Kiseleva
%T Stress-strain state of an elliptical cylinder with an ellipsoidal bottoms of dissimilar materials based FEM
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 65-70
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a8/
%G ru
%F ISU_2013_13_3_a8
J. V. Klochkov; A. P. Nikolaev; T. A. Kiseleva. Stress-strain state of an elliptical cylinder with an ellipsoidal bottoms of dissimilar materials based FEM. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 65-70. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a8/

[1] Klochkov J. V., Nikolaev A. P., Kiseleva T. A., “Comparison of options interpolations movement as an example of an arbitrary shell in the shape of an ellipsoid”, Bulletin of the Volgograd State Architectural and Building Univ. Ser. The Construction and Arch., 2011, no. 23(42), 54–59

[2] Nikolaev A. P., Klochkov J. V., Kiselev A. P., Gureeva N. A., Vector interpolation displacement fields in finite-element calculations, Volgograd, 2012, 264 pp.

[3] Sedov L. I., Continuum Mechanics, v. 1, Nauka, Moscow, 536 pp.

[4] Postnov V. A., Harhurim I. J., The Finite Element Method in the Calculation of Ship Structures, Sudostroenie, Leningrad, 1974, 344 pp.

[5] Klochkov J. V., Nikolaev A. P., Kiseleva T. A., “Analysis VAT Arbitrary Nonshallow Shell in the Form of the Compensator Using Vector Interpolation of Displacement Fields”, Proceedings of the Volgograd Technical University, Interuniversity. Sat Scientific. Art., no. 10(97), IUNL VolgGTU, Volgograd, 2012, 28–32