To a~solution of the inhomogeneous Riemann--Hilbert boundary value problem for analytic function in multiconnected circular domain in a~special case
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 52-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author offers a new approach to solution of the Riemann–Hilbert boundary value problem for analytic function in multiconnected circular domain. This approach is based on construction of solution of corresponding homogeneous problem, when analytic in domain function is being defined by known boundary values of its argument. The author considers a special case of a problem when the index of a problem is more than zero and on unit of less order of connectivity of domain. Resolvability of a problem depends on number of solutions of some system of the linear algebraic equations.
@article{ISU_2013_13_3_a6,
     author = {R. B. Salimov},
     title = {To a~solution of the inhomogeneous {Riemann--Hilbert} boundary value problem for analytic function in multiconnected circular domain in a~special case},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {52--58},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a6/}
}
TY  - JOUR
AU  - R. B. Salimov
TI  - To a~solution of the inhomogeneous Riemann--Hilbert boundary value problem for analytic function in multiconnected circular domain in a~special case
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 52
EP  - 58
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a6/
LA  - ru
ID  - ISU_2013_13_3_a6
ER  - 
%0 Journal Article
%A R. B. Salimov
%T To a~solution of the inhomogeneous Riemann--Hilbert boundary value problem for analytic function in multiconnected circular domain in a~special case
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 52-58
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a6/
%G ru
%F ISU_2013_13_3_a6
R. B. Salimov. To a~solution of the inhomogeneous Riemann--Hilbert boundary value problem for analytic function in multiconnected circular domain in a~special case. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 52-58. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a6/

[1] Salimov R. B., “Modification of new approach to solution of the Hilbert boundary value problem for analytic function in multi-connected circular domain”, Izv. Saratov. Univ. N.S. Ser. Math. Mech. Inform., 12:1 (2012), 32–38

[2] Vekua I. N., Generalized analytic functions, Pergamon Press, Oxford, 1962, 668 pp. | MR | MR | Zbl | Zbl

[3] Gahov F. D., Boundary-Value Problems, Nauka, Moscow, 1977, 640 pp. | MR | Zbl

[4] Muskhelishvili N. I., Singular Integral Equations. Boundary-Value Problems of the Theory of Functions and Some of Their Applications to Mathematical Physics, Nauka, Moscow, 1968, 511 pp. | MR | Zbl

[5] Salimov R. B., “Some properties of analytic in a disc functions and their applications to study of behaviour of singular integrals”, Russian Math. (Izvestiya VUZ. Matematika), 56:3 (2012), 36–44 | DOI | MR | Zbl