Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_3_a6, author = {R. B. Salimov}, title = {To a~solution of the inhomogeneous {Riemann--Hilbert} boundary value problem for analytic function in multiconnected circular domain in a~special case}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {52--58}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a6/} }
TY - JOUR AU - R. B. Salimov TI - To a~solution of the inhomogeneous Riemann--Hilbert boundary value problem for analytic function in multiconnected circular domain in a~special case JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 52 EP - 58 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a6/ LA - ru ID - ISU_2013_13_3_a6 ER -
%0 Journal Article %A R. B. Salimov %T To a~solution of the inhomogeneous Riemann--Hilbert boundary value problem for analytic function in multiconnected circular domain in a~special case %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 52-58 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a6/ %G ru %F ISU_2013_13_3_a6
R. B. Salimov. To a~solution of the inhomogeneous Riemann--Hilbert boundary value problem for analytic function in multiconnected circular domain in a~special case. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 52-58. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a6/
[1] Salimov R. B., “Modification of new approach to solution of the Hilbert boundary value problem for analytic function in multi-connected circular domain”, Izv. Saratov. Univ. N.S. Ser. Math. Mech. Inform., 12:1 (2012), 32–38
[2] Vekua I. N., Generalized analytic functions, Pergamon Press, Oxford, 1962, 668 pp. | MR | MR | Zbl | Zbl
[3] Gahov F. D., Boundary-Value Problems, Nauka, Moscow, 1977, 640 pp. | MR | Zbl
[4] Muskhelishvili N. I., Singular Integral Equations. Boundary-Value Problems of the Theory of Functions and Some of Their Applications to Mathematical Physics, Nauka, Moscow, 1968, 511 pp. | MR | Zbl
[5] Salimov R. B., “Some properties of analytic in a disc functions and their applications to study of behaviour of singular integrals”, Russian Math. (Izvestiya VUZ. Matematika), 56:3 (2012), 36–44 | DOI | MR | Zbl