Hyperbolic parallelograms of the plane~$\widehat H$
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 43-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hyperbolic parallelograms on a Hyperbolic Plane $\widehat H$ of the positive curvature in the Cayley–Klein model are investigated. We conducted their classification, obtained the metric correlations between the measure of angles and the expressions of lengths of the edges through a measure of included angles.
@article{ISU_2013_13_3_a5,
     author = {L. N. Romakina},
     title = {Hyperbolic parallelograms of the plane~$\widehat H$},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {43--52},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a5/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - Hyperbolic parallelograms of the plane~$\widehat H$
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 43
EP  - 52
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a5/
LA  - ru
ID  - ISU_2013_13_3_a5
ER  - 
%0 Journal Article
%A L. N. Romakina
%T Hyperbolic parallelograms of the plane~$\widehat H$
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 43-52
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a5/
%G ru
%F ISU_2013_13_3_a5
L. N. Romakina. Hyperbolic parallelograms of the plane~$\widehat H$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 43-52. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a5/

[1] Rozenfeld B. A., Non-Euclidean spaces, Nauka, Moscow, 1969, 548 pp. | MR

[2] Romakina L. N., “Simple partitions of a hyperbolic plane of positive curvature”, Sb. Math., 203:9 (2012), 1310–1341 | DOI | DOI | MR | Zbl

[3] Romakina L. N., “Oval Lines of the Hyperbolic Plane of Positive Curvature”, Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 12:3 (2012), 37–44

[4] Romakina L. N., “Analogs of a formula of Lobachevsky for angle of parallelism on the hyperbolic plane of positive curvature”, Siberian Electronic Mathematical Reports, 10 (2013), 393–407

[5] Romakina L. N., “The theorem of the area of a rectangular trihedral of the hyperbolic plane of positive curvature”, Far Eastern Mathematical Journal, 13:1 (2013), 127–147 | Zbl

[6] Romakina L. N., “Finite Closed 3(4)-Loops of Extended Hyperbolic Plane”, Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 10:3 (2010), 14–26

[7] Romakina L. N., “Finite Closed 5-Loops of Extended Hyperbolic Plane”, Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 11:1 (2011), 38–49