Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_3_a5, author = {L. N. Romakina}, title = {Hyperbolic parallelograms of the plane~$\widehat H$}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {43--52}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a5/} }
TY - JOUR AU - L. N. Romakina TI - Hyperbolic parallelograms of the plane~$\widehat H$ JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 43 EP - 52 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a5/ LA - ru ID - ISU_2013_13_3_a5 ER -
L. N. Romakina. Hyperbolic parallelograms of the plane~$\widehat H$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 43-52. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a5/
[1] Rozenfeld B. A., Non-Euclidean spaces, Nauka, Moscow, 1969, 548 pp. | MR
[2] Romakina L. N., “Simple partitions of a hyperbolic plane of positive curvature”, Sb. Math., 203:9 (2012), 1310–1341 | DOI | DOI | MR | Zbl
[3] Romakina L. N., “Oval Lines of the Hyperbolic Plane of Positive Curvature”, Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 12:3 (2012), 37–44
[4] Romakina L. N., “Analogs of a formula of Lobachevsky for angle of parallelism on the hyperbolic plane of positive curvature”, Siberian Electronic Mathematical Reports, 10 (2013), 393–407
[5] Romakina L. N., “The theorem of the area of a rectangular trihedral of the hyperbolic plane of positive curvature”, Far Eastern Mathematical Journal, 13:1 (2013), 127–147 | Zbl
[6] Romakina L. N., “Finite Closed 3(4)-Loops of Extended Hyperbolic Plane”, Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 10:3 (2010), 14–26
[7] Romakina L. N., “Finite Closed 5-Loops of Extended Hyperbolic Plane”, Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 11:1 (2011), 38–49