Minimal edge extensions of palm trees
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 99-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Minimal edge extension of graphs can be regarded as a model of optimal edge fault tolerant implementation of a system. The problem of finding the minimal edge extensions of an arbitrary graph is NP-complete, that's why it is of interest to find classes of graphs for which it is possible to build a minimal edge extension analytically. This paper is about of the one-edge extensions of a graphs from a special class named palm trees. In this paper presents a kind of one-edge extension for some palm trees and the proof that it is minimal.
@article{ISU_2013_13_3_a14,
     author = {D. D. Komarov},
     title = {Minimal edge extensions of palm trees},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {99--104},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a14/}
}
TY  - JOUR
AU  - D. D. Komarov
TI  - Minimal edge extensions of palm trees
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 99
EP  - 104
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a14/
LA  - ru
ID  - ISU_2013_13_3_a14
ER  - 
%0 Journal Article
%A D. D. Komarov
%T Minimal edge extensions of palm trees
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 99-104
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a14/
%G ru
%F ISU_2013_13_3_a14
D. D. Komarov. Minimal edge extensions of palm trees. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 99-104. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a14/

[1] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23:2 (1993), 135–142 | DOI | MR | Zbl

[2] Abrosimov M. B., “Complexity of some problems associated with the extension of graphs”, Math. Notes, 88:5 (2010), 643–650 | DOI | MR | Zbl

[3] Bogomolov A. M., Saliy V. N., Algebraic foundations of the theory of discrete systems, Nauka, Moscow, 1997, 368 pp. | MR | Zbl