$\alpha$-accessible domains, a~nonsmooth case
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper continues the study of $\alpha$-accessible domains in $\mathbb R^n$. They are starlike domains and satisfy cone condition which is important for applications. Conditions of $\alpha$-accessibility of domain, defined by the inequality $F(x)0$, is obtained for a continuous function $F$ in $\mathbb R^n$. Thus these conditions are written in the form of inequalities for the directional derivatives; necessary and sufficient conditions differ only in the sign of equality in these inequalities. We obtain new results even in the case where $\alpha=0$ (the case of starlike domains).
@article{ISU_2013_13_3_a0,
     author = {K. F. Amozova and V. V. Starkov},
     title = {$\alpha$-accessible domains, a~nonsmooth case},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a0/}
}
TY  - JOUR
AU  - K. F. Amozova
AU  - V. V. Starkov
TI  - $\alpha$-accessible domains, a~nonsmooth case
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 3
EP  - 8
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a0/
LA  - ru
ID  - ISU_2013_13_3_a0
ER  - 
%0 Journal Article
%A K. F. Amozova
%A V. V. Starkov
%T $\alpha$-accessible domains, a~nonsmooth case
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 3-8
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a0/
%G ru
%F ISU_2013_13_3_a0
K. F. Amozova; V. V. Starkov. $\alpha$-accessible domains, a~nonsmooth case. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 3-8. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a0/