$\alpha$-accessible domains, a~nonsmooth case
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper continues the study of $\alpha$-accessible domains in $\mathbb R^n$. They are starlike domains and satisfy cone condition which is important for applications. Conditions of $\alpha$-accessibility of domain, defined by the inequality $F(x)0$, is obtained for a continuous function $F$ in $\mathbb R^n$. Thus these conditions are written in the form of inequalities for the directional derivatives; necessary and sufficient conditions differ only in the sign of equality in these inequalities. We obtain new results even in the case where $\alpha=0$ (the case of starlike domains).
@article{ISU_2013_13_3_a0,
     author = {K. F. Amozova and V. V. Starkov},
     title = {$\alpha$-accessible domains, a~nonsmooth case},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a0/}
}
TY  - JOUR
AU  - K. F. Amozova
AU  - V. V. Starkov
TI  - $\alpha$-accessible domains, a~nonsmooth case
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 3
EP  - 8
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a0/
LA  - ru
ID  - ISU_2013_13_3_a0
ER  - 
%0 Journal Article
%A K. F. Amozova
%A V. V. Starkov
%T $\alpha$-accessible domains, a~nonsmooth case
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 3-8
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a0/
%G ru
%F ISU_2013_13_3_a0
K. F. Amozova; V. V. Starkov. $\alpha$-accessible domains, a~nonsmooth case. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 3-8. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a0/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. ; Besov O. V., Ilin V. P., Nikolskij S. M., Integral Representations of Functions and Imbedding Theorems, v. 1, John Wiley Sons, New York–Toronto–Ontario–London, 1978 ; v. 2, 1979 | MR | Zbl | Zbl

[2] Dolženko E. P., “Boundary properties of arbitrary functions”, Math. USSR Izv., 1:1 (1967), 1–12 | DOI | MR | Zbl | Zbl

[3] Adams R. A., Fournier J., “Cone conditions and properties of Sobolev spaces”, J. Math. Anal. Appl., 61 (1977), 713–734 | DOI | MR | Zbl

[4] Zaremba S., “Sur le principe de Direchlet”, Acta Math., 34 (1911), 293–316 | DOI | MR | Zbl

[5] Liczberski P., Starkov V. V., “Domains in $\mathbb R^n$ with conical accessible boundary”, J. Math. Anal. Appl., 408:2 (2013), 547–560 | DOI | MR

[6] Liczberski P., Starkov V. V., “Planar $\alpha$-angularly starlike domains, $\alpha$-angularly starlike functions and their generalizations to multi-dimensional case”, 60 years of analytic functions in Lublin in memory of our professors and friends Jan G. Krzyz, Zdzislaw Lewandowski and Wojciech Szapiel, Innovatio Press Sciebtific publishing house, University of Economics and Innovation in Lublin, 2012, 117–124 | MR

[7] Dudova A. S., “Starlikeness conditions of Lebesgue set of directionally differentiable function”, Mathematics. Mechanics, 5, Saratov, 2003, 30–31

[8] Starkov V. V., “Starlikeness criteria for domains of $\mathbb R^n$”, Trudy PGU. Ser. Math., 18, 2011, 70–82 | MR