Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_2_a8, author = {V. V. Skobelev}, title = {Automata on algebraic structures}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {58--66}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a8/} }
V. V. Skobelev. Automata on algebraic structures. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 2, pp. 58-66. http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a8/
[1] Gill A., Linear sequential machines, Nauka, Moscow, 1974, 298 pp. | MR | Zbl
[2] Faradgev R. G., Linear sequential machines, Sovetskoje Radio, Moscow, 1975, 248 pp.
[3] Agibalov G. P., “Recognition of operators realized by linear autonomous automata”, Izv. AN USSR. Tech. Cybernetika, 1970, no. 3, 99–108 | MR | Zbl
[4] Agibalov G. P., Jufit Ya. G., “On simple experiments for linear initial automata”, Avtomatica i vychisliteljnaja technika, 1972, no. 2, 17–19 | MR | Zbl
[5] Speranskij D. V., Experiments with linear and bi-linear finite automata, Saratov. Univ. Press, Saratov, 2004, 144 pp.
[6] Kurosh A. G., Lectures in general algebra, Nauka, Moscow, 1973, 400 pp.
[7] Skobelev V. V., Skobelev V. G., Analysis of ciphersystems, IAMM NASU, Donetsk, 2009, 479 pp.
[8] Skobelev V. V., Glazunov N. M., Skobelev V. G., Varieties over rings. Theory and applications, IAMM NASU, Donetsk, 2011, 323 pp.
[9] Skobelev V. V., Skobelev V. G., “Analysis of non-linear automata with lag 2 over finite ring”, Prikladnaja discretnaja matematika, 2010, no. 1, 68–85
[10] Skobelev V. V., “Complexity of identification of non-linear 1-dimensional automata with lag 2 over finite ring”, Computernaja mathematika, 2 (2011), 81–89
[11] Kuznetsov S. P., Dynamical chaos, Fizmatlit, Moscow, 2001, 296 pp.
[12] Skobelev V. V., Skobelev V. G., “On the complexity of analysis of automata over a finite ring”, Cybernet. Systems Anal., 46:4 (2010), 533–545 | DOI | MR | Zbl
[13] Skobelev V. V., “On systems of polynomial equations over finite rings”, Naukovi zapiski NaU-KMA. Ser. Komp'yuterni nauki, 138 (2012), 15–19
[14] Skobelev V. V., “On subsets of automata over finite ring determined via terms of ideals”, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka, 2011, no. 3, 212–218 (in Ukrainian)
[15] Skobelev V. V., “Simulation of automata over a finite ring by the automata with finite memory”, J. of Automation and Information Sci., 44:5 (2012), 57–66 | DOI
[16] Skobelev V. V., “Analysis of the problem of recognition of automaton over some ring”, Dopov. Nats. Akad. Nauk Ukr., Mat., Pryr., Tekh. Nauky, 2012, no. 9, 29–35 | Zbl
[17] Skobelev V. V., “On automata determined over varieties over some ring”, Tr. Inst. Prikl. Mat. Mekh., 24, 2012, 190–201
[18] Skobelev V. V., “Automata over vatieties with some algebra”, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka, 2012, no. 2, 234–238 (in Ukrainian) | Zbl
[19] Skobelev V. V., “Analysis of automata determined over parametric varieties over an associative ring”, Visnik Kiïvskogo universitetu. Ser.: fiz.-mat. nauki, 2012, no. 3, 239–244 | Zbl
[20] Skobelev V. V., “On automata determined over polynomially parametric varieties over some finite ring”, Tr. Inst. Prikl. Mat. Mekh., 25, 2012, 185–195
[21] Skobelev V. V., “On homomorphisms of automata over varieties over some ring”, Dopov. Nats. Akad. Nauk Ukr., Mat., Pryr., Tekh. Nauky, 2013, no. 1, 42–46 | Zbl
[22] Skobelev V. V., “Analysis of automata determined over elliptic curves”, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka, 2012, no. 1, 223–230 (in Ukrainian) | Zbl
[23] Skobelev V. V., “Analysis of families of hash functions defined by automata over a finite ring”, Cybernet. Systems Anal., 49:2 (2013), 209–216 | DOI