Representation of universal planar automata by autonomous input signals
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 2, pp. 31-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

Universal planar automata are universally attracted objects in the category of automata, whose sets of states and output signals are endowed with structures of planes. The main result of the paper shows that any universal planar automaton is isomorphic to a many-sorted algebraic system canonically constructed from autonomous input signals of the automaton.
@article{ISU_2013_13_2_a4,
     author = {V. A. Molchanov},
     title = {Representation of universal planar automata by autonomous input signals},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a4/}
}
TY  - JOUR
AU  - V. A. Molchanov
TI  - Representation of universal planar automata by autonomous input signals
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 31
EP  - 37
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a4/
LA  - ru
ID  - ISU_2013_13_2_a4
ER  - 
%0 Journal Article
%A V. A. Molchanov
%T Representation of universal planar automata by autonomous input signals
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 31-37
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a4/
%G ru
%F ISU_2013_13_2_a4
V. A. Molchanov. Representation of universal planar automata by autonomous input signals. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 2, pp. 31-37. http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a4/

[1] Plotkin B. I., Greenglaz L. Ja., Gvaramija A. A., Algebraic structures in automata and databases theory, World Scientific, Singapore, River Edge, NJ, 1992 | Zbl

[2] Simovici Dan A., “On the theory of reduction of semilatticial automata”, An. Sti. ale Univ. “Al. l. Cuza” Din Iasi. (Ser. Nouă). Sec. 1a, 22:1 (1976), 107–110 | MR | Zbl

[3] Gécseg F., “On products of ordered automata. I”, Acta Sci. Math., 24:3–4 (1963), 244–250 | MR

[4] Gécseg F., “On products of ordered automata. II”, Acta Sci. Math., 25:1–2 (1964), 124–128 | MR

[5] Eilenberg S., Automata, languages and machines, v. B, Academic Press, N.Y.–San Francisco–London, 1976, 451 pp. | Zbl

[6] Introduction to finite geometries, North-Holland Publishing Co., Amsterdam, 1976 | MR

[7] Ulam S. M., A Collection of Mathematical Problems, Los Alamos Scientific Laboratories, New Mexico, 1960 | Zbl

[8] Gluskin L. M., “Semigroups and rings of endomorphisms of linear spaces”, Izv. Akad. Nauk SSSR Ser. Mat., 23:6 (1959), 841–870 | MR | Zbl

[9] Jonson B., Topics in Universal Algebras, Lecture Notes in Mathematics, Springer Verlag, Berlin–Heidelberg–N.Y., 1972, 220 pp. | DOI | MR

[10] Konig D., Theorie der endlichen und unendlichen Graphen, Acad. Verlag M. B. H., Leipzig, 1936, 258 pp. | MR

[11] Krasner M., “Endotheorie de Galois abstraita”, Algèbre et Théorie des Nombres, Séminaire P. Dubreil, M.-L. Dubreil-Jacotin, L. Lesieur et C. Pisot, 1968/69, 22ieme annee, Fasc. 1, Paris, 1970, Exp. 6, 19 pp. | MR

[12] Molchanov V. A., “A universal planar automaton is determined by its semigroup of input symbols”, Semigroup Forum, 82 (2011), 1–9 | DOI | MR | Zbl

[13] Molchanov V. A., “On concrete characterization of universal planar automata”, Mathematics. Mechanics, 13, Saratov Univ. Press, Saratov, 2011, 67–69

[14] Molchanov V. A., “On relatively elementary definability of the class of universal planar automata in the class of all semigroups”, Modern Problems of Algebra Mathematical Logic, Proc. of the international conference dedicated to 100-th anniversary of V. V. Morozov and youth school-conf., Kazan, 2011, 145–147

[15] Ershov Yu. L., Problems of decidability and constructive models, Nauka, Moscow, 1980, 416 pp. | MR