Queueing networks with batch movements of customers, blocking and clusters
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 2, pp. 20-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two types queueing networks with batch movements of customers – networks with blocking and networks with clusters are investigated. Product form stationary distribution for networks with blocking of transitions in states, in which the number of customers in queueing systems exceeds given values, is derived. For queueing networks with disjoint clusters of systems the problem of analyzing is solved and the product form stationary distribution is found. Examples of analysis of the network with blocking and the network with clusters are presented.
@article{ISU_2013_13_2_a3,
     author = {Yu. I. Mitrophanov and V. I. Dolgov and E. S. Rogachko and E. P. Stankevich},
     title = {Queueing networks with batch movements of customers, blocking and clusters},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {20--31},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a3/}
}
TY  - JOUR
AU  - Yu. I. Mitrophanov
AU  - V. I. Dolgov
AU  - E. S. Rogachko
AU  - E. P. Stankevich
TI  - Queueing networks with batch movements of customers, blocking and clusters
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 20
EP  - 31
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a3/
LA  - ru
ID  - ISU_2013_13_2_a3
ER  - 
%0 Journal Article
%A Yu. I. Mitrophanov
%A V. I. Dolgov
%A E. S. Rogachko
%A E. P. Stankevich
%T Queueing networks with batch movements of customers, blocking and clusters
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 20-31
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a3/
%G ru
%F ISU_2013_13_2_a3
Yu. I. Mitrophanov; V. I. Dolgov; E. S. Rogachko; E. P. Stankevich. Queueing networks with batch movements of customers, blocking and clusters. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 2, pp. 20-31. http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a3/

[1] Balsamo S., Nitto Persone V., “A survey of product form queueing networks with blocking and their equivalences”, Ann. Oper. Res., 48 (1994), 31–61 | DOI | MR | Zbl

[2] Boxma O. J., Konheim A. G., “Approximate analysis of exponential queueing systems with blocking”, Acta Informatica, 15 (1981), 19–66 | DOI | MR | Zbl

[3] Clo M. C., “MVA for product-form cyclic queueing networks with blocking”, Ann. Oper. Res., 79 (1998), 83–96 | DOI | MR | Zbl

[4] Balsamo S., Clo M. C., “A convolution algorithm for product-form queueing networks with blocking”, Ann. Oper. Res., 79 (1998), 97–117 | DOI | MR | Zbl

[5] Liu X., Buzacott J. A., “A decomposition-related throughput property of tandem queueing networks with blocking”, Queueing Systems, 13 (1993), 361–383 | DOI | MR | Zbl

[6] Strelen J. C., Bark B., Becker J., Jonas V., “Analysis of queueing networks with blocking using a new aggregation technique”, Ann. Oper. Res., 79 (1998), 121–142 | DOI | MR | Zbl

[7] Boucherie R. J., Dijk N. M., “A generalization of Norton's theorem for queueing networks”, Queueing Systems, 13 (1993), 251–289 | DOI | MR | Zbl

[8] Dijk N. M., Sluis E., “Simple product-form bounds for queueing networks with finite clusters”, Ann. Oper. Res., 113 (2002), 175–195 | DOI | MR | Zbl

[9] Boucherie R. J., Dijk N. M., Queueing networks: a fundamental approach, Springer Science+Business Media, LLC, N.Y.–Heidelberg–London, 2011, 823 pp. | MR | Zbl

[10] Henderson W., Taylor P. G., “Product form in networks of queues with batch arrivals and batch services”, Queueing Systems, 6 (1990), 71–87 | DOI | MR | Zbl

[11] Henderson W., Pearce C. E. M., Taylor P. G., Dijk N. M., “Closed queueing networks with batch services”, Queueing Systems, 6 (1990), 59–70 | DOI | MR | Zbl

[12] Boucherie R. J., Dijk N. M., “Spatial birth-dearth processes with multiple changes and applications to batch service networks and clustering processes”, Adv. Appl. Prob., 22 (1991), 433–455 | DOI | MR

[13] Boucherie R. J., Dijk N. M., “Product forms for queueing networks with state-dependent multiple job transitions”, Adv. Appl. Prob., 23:1 (1991), 152–187 | DOI | MR | Zbl

[14] Boucherie R. J., “Batch routing queueing networks with jump-over blocking”, Probability in the Engineering and Informational Sciences, 10 (1996), 287–297 | DOI | MR | Zbl

[15] Miyazawa M., “Structure-reversibility and departure functions of queueing networks with batch movements and state dependent routing”, Queueing Systems, 25 (1997), 45–75 | DOI | MR | Zbl

[16] Bause F., Boucherie R. J., Buchholz P., “Norton's theorem for batch routing queueing networks”, Stochastic Models, 17 (2001), 39–60 | DOI | MR | Zbl

[17] Mitrophanov Yu. I., Rogachko E. S., Stankevich E. P., “Analysis of heterogeneous queueing networks with batch movements of customers”, Izv. Sarat. Univ. N. S. Ser. Math. Mech. Inform., 11:3, pt. 1 (2011), 41–46