On stability theory of autonomous angular stabilization system for combined dynamical systems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 2, pp. 9-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Studied the effect on the stability of the longitudinal acceleration discretely-continuum model of single-channel angular stabilization system with of delayed argument. Methods of construction asymptotic stability areas and analysis of impulse transition functions are developed. The critical values of the longitudinal acceleration are defined.
@article{ISU_2013_13_2_a1,
     author = {D. K. Andreichenko and K. P. Andreichenko and V. V. Kononov},
     title = {On stability theory of autonomous angular stabilization system for combined dynamical systems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {9--14},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a1/}
}
TY  - JOUR
AU  - D. K. Andreichenko
AU  - K. P. Andreichenko
AU  - V. V. Kononov
TI  - On stability theory of autonomous angular stabilization system for combined dynamical systems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 9
EP  - 14
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a1/
LA  - ru
ID  - ISU_2013_13_2_a1
ER  - 
%0 Journal Article
%A D. K. Andreichenko
%A K. P. Andreichenko
%A V. V. Kononov
%T On stability theory of autonomous angular stabilization system for combined dynamical systems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 9-14
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a1/
%G ru
%F ISU_2013_13_2_a1
D. K. Andreichenko; K. P. Andreichenko; V. V. Kononov. On stability theory of autonomous angular stabilization system for combined dynamical systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 2, pp. 9-14. http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a1/

[1] Andreichenko D. K., Andreichenko K. P., “On the theory of autonomous angular stabilization systems of missiles for salvo firing”, J. of Computer and Systems Sciences Intern., 48:3 (2009), 465–480 | DOI

[2] Andreichenko D. K., Andreichenko K. P., “On the theory of stabilization of satellites having elastic rods”, J. of Computer and Systems Sciences Intern., 43:6 (2004), 973–986 | MR | Zbl

[3] Fletcher K., Numerical methods based on the Galerkin method, Mir, Moscow, 1988, 352 pp.

[4] Cole J. D., Perturbation methods in applied mathematics, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.–Toronto, Ont.–London, 1968, 260 pp. | MR | Zbl

[5] Andreichenko D. K., Andreichenko K. P., “On the theory of hybrid dynamical systems”, J. of Computer and Systems Sciences Intern., 39:3 (2000), 383–398 | MR