Absolute Convergence of Some Series, Connected with the Fourier--Vilenkin Series
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 38-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two theorems of O. P. Goyal concerning absolute convergence of some trigonometric series are extended to the case of Vilenkin systems and $L^p$-modulus of continuity.
@article{ISU_2013_13_1_a8,
     author = {N. V. Egoshina},
     title = {Absolute {Convergence} of {Some} {Series,} {Connected} with the {Fourier--Vilenkin} {Series}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {38--42},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a8/}
}
TY  - JOUR
AU  - N. V. Egoshina
TI  - Absolute Convergence of Some Series, Connected with the Fourier--Vilenkin Series
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 38
EP  - 42
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a8/
LA  - ru
ID  - ISU_2013_13_1_a8
ER  - 
%0 Journal Article
%A N. V. Egoshina
%T Absolute Convergence of Some Series, Connected with the Fourier--Vilenkin Series
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 38-42
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a8/
%G ru
%F ISU_2013_13_1_a8
N. V. Egoshina. Absolute Convergence of Some Series, Connected with the Fourier--Vilenkin Series. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 38-42. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a8/

[1] Golubov B. I., Yefimov A. V., Skvortsov V. A., Walsh series and transforms, Nauka, Moskow, 1987, 344 pp. | MR | Zbl

[2] Goyal O. P., “On the absolute convergence of a series associated with a Fourier series”, Mat. vesnik, 2(17) (1965), 85–88 | MR | Zbl

[3] Goyal O. P., “On the absolute convergence of Fourier series”, Mat. vesnik, 2(17) (1965), 88–91 | MR | Zbl

[4] Agayev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshteyn A. I., Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups, Elm, Baku, 1981, 180 pp. | MR

[5] Volosivets S. S., “Modified Hardy and Hardy–Littlewood operators and their behaviour in various spaces”, Izvestiya : Mathematics, 75:1 (2011), 29–51 | DOI | DOI | MR | Zbl

[6] Volosivets S. S., “Approximation of Functions of bounded $p$-fluctuation by means of polynomials with respect to Multiplicative Systems”, Analysis Math., 21:1 (1995), 61–77 | DOI | MR | Zbl