Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_1_a5, author = {Ya. A. Vasiliev}, title = {About {Solution} the {Generalized} {Boundary} {Value} {Problem} of {Riemann} {Type} for {Bianalytic} {Functions} in {Case} of {Any} {Simply} {Connected} {Domains}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {24--28}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a5/} }
TY - JOUR AU - Ya. A. Vasiliev TI - About Solution the Generalized Boundary Value Problem of Riemann Type for Bianalytic Functions in Case of Any Simply Connected Domains JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 24 EP - 28 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a5/ LA - ru ID - ISU_2013_13_1_a5 ER -
%0 Journal Article %A Ya. A. Vasiliev %T About Solution the Generalized Boundary Value Problem of Riemann Type for Bianalytic Functions in Case of Any Simply Connected Domains %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 24-28 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a5/ %G ru %F ISU_2013_13_1_a5
Ya. A. Vasiliev. About Solution the Generalized Boundary Value Problem of Riemann Type for Bianalytic Functions in Case of Any Simply Connected Domains. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 24-28. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a5/
[1] Rasulov K. M., The Boundary Problems for Polyanalytic Functions and Some of Their Applications, SGPU, Smolensk, 1998, 343 pp.
[2] Vasiliev Y. A., “About Solution the Generalized Boundary Problem of Riemann Type for Bianalytic Functions in the Unit Disc”, Modern problems of science, Print-Express, Smolensk, 2011, 26–32
[3] Vasiliev Y. A., Rasulov K. M., “The Generalized Boundary Value Problem of Riemann Type for Bianalytic Functions in the Unit Disc”, Izv. Smolensk. Gos. Un-ta, 2011, no. 2, 119–129
[4] Gahov F. D., The Boundary Problems, Nauka, Moscow, 1977, 640 pp. | MR