About Solution the Generalized Boundary Value Problem of Riemann Type for Bianalytic Functions in Case of Any Simply Connected Domains
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 24-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

On this we investigate generalized boundary value problem of Riemann type in the class of sectionally bianalytic functions in case of any simply connected domains. The methods for solving the considered problem was developed and its decidability picture was constructed.
@article{ISU_2013_13_1_a5,
     author = {Ya. A. Vasiliev},
     title = {About {Solution} the {Generalized} {Boundary} {Value} {Problem} of {Riemann} {Type} for {Bianalytic} {Functions} in {Case} of {Any} {Simply} {Connected} {Domains}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {24--28},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a5/}
}
TY  - JOUR
AU  - Ya. A. Vasiliev
TI  - About Solution the Generalized Boundary Value Problem of Riemann Type for Bianalytic Functions in Case of Any Simply Connected Domains
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 24
EP  - 28
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a5/
LA  - ru
ID  - ISU_2013_13_1_a5
ER  - 
%0 Journal Article
%A Ya. A. Vasiliev
%T About Solution the Generalized Boundary Value Problem of Riemann Type for Bianalytic Functions in Case of Any Simply Connected Domains
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 24-28
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a5/
%G ru
%F ISU_2013_13_1_a5
Ya. A. Vasiliev. About Solution the Generalized Boundary Value Problem of Riemann Type for Bianalytic Functions in Case of Any Simply Connected Domains. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 24-28. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a5/

[1] Rasulov K. M., The Boundary Problems for Polyanalytic Functions and Some of Their Applications, SGPU, Smolensk, 1998, 343 pp.

[2] Vasiliev Y. A., “About Solution the Generalized Boundary Problem of Riemann Type for Bianalytic Functions in the Unit Disc”, Modern problems of science, Print-Express, Smolensk, 2011, 26–32

[3] Vasiliev Y. A., Rasulov K. M., “The Generalized Boundary Value Problem of Riemann Type for Bianalytic Functions in the Unit Disc”, Izv. Smolensk. Gos. Un-ta, 2011, no. 2, 119–129

[4] Gahov F. D., The Boundary Problems, Nauka, Moscow, 1977, 640 pp. | MR