New Estimates of the Error of Approximation of Derivatives under Interpolation of a Function on a Triangle by Polynomials of the Third Degree
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 15-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a method of interpolation by polynomials of the third degree which gives continuity of the resulting piecewise polynomial function on the triangulated domain. We get improved estimates for the error of approximation of derivatives of order 3 and keep accuracy of other estimates.
@article{ISU_2013_13_1_a3,
     author = {N. V. Baidakova},
     title = {New {Estimates} of the {Error} of {Approximation} of {Derivatives} under {Interpolation} of a {Function} on a {Triangle} by {Polynomials} of the {Third} {Degree}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {15--19},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a3/}
}
TY  - JOUR
AU  - N. V. Baidakova
TI  - New Estimates of the Error of Approximation of Derivatives under Interpolation of a Function on a Triangle by Polynomials of the Third Degree
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 15
EP  - 19
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a3/
LA  - ru
ID  - ISU_2013_13_1_a3
ER  - 
%0 Journal Article
%A N. V. Baidakova
%T New Estimates of the Error of Approximation of Derivatives under Interpolation of a Function on a Triangle by Polynomials of the Third Degree
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 15-19
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a3/
%G ru
%F ISU_2013_13_1_a3
N. V. Baidakova. New Estimates of the Error of Approximation of Derivatives under Interpolation of a Function on a Triangle by Polynomials of the Third Degree. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 15-19. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a3/

[1] Subbotin Yu. N., “A New Cubic Element in the FEM”, Proc. of the Steklov Institute of Math., 2005, S176–S187 | MR | Zbl

[2] Baidakova N. V., “A Method of Hermite interpolation by polynomials of the third degree on a triangle”, Proc. of the Steklov Institute of Math., 2005, S49–S55 | MR | Zbl

[3] Ženišek A., “Maximum-angle condition and triangular finite elements of Hermite type”, Math. Comp., 64:211 (1995), 929–941 | DOI | MR

[4] Latypova N. V., “Error of interpolation by piecewise cubic polynomial on triangle”, Proc. Udmurt. University. Mathematics, 2003, 3–10

[5] Matveeva J. V., “Method of Hermite Interpolation by Polynomials of the Third Degree on a Triangle Using Mixed Derivatives”, Izv. Saratov. Univer. New Ser. Ser. Math. Mech. Inform., 7:1 (2007), 23–27 | MR

[6] Berezin I. S., Zhidkov N. P., Computing Methods, v. 1, Pergamon Press, Oxford, 1965 | MR | Zbl

[7] Baidakova N. V., “Influence of smoothness on the error of approximation of derivatives under local interpolation on triangulations”, Proc. of the Steklov Institute of Math., 2012, S33–S47