Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_1_a20, author = {V. P. Sklyarov}, title = {The {Condition} of {N.\,P.~Kuptsov} $s$-regularity}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {84--87}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a20/} }
TY - JOUR AU - V. P. Sklyarov TI - The Condition of N.\,P.~Kuptsov $s$-regularity JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 84 EP - 87 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a20/ LA - ru ID - ISU_2013_13_1_a20 ER -
V. P. Sklyarov. The Condition of N.\,P.~Kuptsov $s$-regularity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 84-87. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a20/
[1] Kuptsov N. P., “Direct and converse theorems of approximation theory and semigroups of operators”, Russ. Math. Surv., 23:4 (1968), 115–177 | DOI | MR | MR
[2] Sklyarov V. P., “Again on uniform approximation of Hermite functions”, Nauch. sb., Differencial'nie uravneniya i teoriya funkcii, 3, Saratov, 1980, 105–113
[3] Szegö Gábor, Orthogonal polynomials, v. VIII, American Mathematical Society (AMS). Colloquium Publ., 23, AMS, New York, 1959, 421 pp. | MR | Zbl
[4] Markett C., “Norm estimates for $(C,\delta)$ means of Hermite expansions and bounds for $\delta\sb{eff}$”, Acta Math. Hung., 43 (1984), 187–198 | DOI | MR | Zbl
[5] Askey R., Wainger S., “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87 (1965), 695–708 | DOI | MR | Zbl