The Condition of N.\,P.~Kuptsov $s$-regularity
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 84-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the condition of $s$-regularity for the operator $Qy =-y'' (x)+x ^ 2y (x)$ in the spaces $L^{p}{(-\infty,\infty)}$.
@article{ISU_2013_13_1_a20,
     author = {V. P. Sklyarov},
     title = {The {Condition} of {N.\,P.~Kuptsov} $s$-regularity},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {84--87},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a20/}
}
TY  - JOUR
AU  - V. P. Sklyarov
TI  - The Condition of N.\,P.~Kuptsov $s$-regularity
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 84
EP  - 87
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a20/
LA  - ru
ID  - ISU_2013_13_1_a20
ER  - 
%0 Journal Article
%A V. P. Sklyarov
%T The Condition of N.\,P.~Kuptsov $s$-regularity
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 84-87
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a20/
%G ru
%F ISU_2013_13_1_a20
V. P. Sklyarov. The Condition of N.\,P.~Kuptsov $s$-regularity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 84-87. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a20/

[1] Kuptsov N. P., “Direct and converse theorems of approximation theory and semigroups of operators”, Russ. Math. Surv., 23:4 (1968), 115–177 | DOI | MR | MR

[2] Sklyarov V. P., “Again on uniform approximation of Hermite functions”, Nauch. sb., Differencial'nie uravneniya i teoriya funkcii, 3, Saratov, 1980, 105–113

[3] Szegö Gábor, Orthogonal polynomials, v. VIII, American Mathematical Society (AMS). Colloquium Publ., 23, AMS, New York, 1959, 421 pp. | MR | Zbl

[4] Markett C., “Norm estimates for $(C,\delta)$ means of Hermite expansions and bounds for $\delta\sb{eff}$”, Acta Math. Hung., 43 (1984), 187–198 | DOI | MR | Zbl

[5] Askey R., Wainger S., “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87 (1965), 695–708 | DOI | MR | Zbl