The Approximation of Functions by Transformed Fourier--Vilenkin Series in the H\"older Norm
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 72-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the oscillations of rows from matrix $A$, we obtain an estimate for the degree of approximation in Hölder metric by linear means of Fourier–Vilenkin series generated by $A$.
@article{ISU_2013_13_1_a17,
     author = {T. V. Likhacheva},
     title = {The {Approximation} of {Functions} by {Transformed} {Fourier--Vilenkin} {Series} in the {H\"older} {Norm}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {72--76},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a17/}
}
TY  - JOUR
AU  - T. V. Likhacheva
TI  - The Approximation of Functions by Transformed Fourier--Vilenkin Series in the H\"older Norm
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 72
EP  - 76
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a17/
LA  - ru
ID  - ISU_2013_13_1_a17
ER  - 
%0 Journal Article
%A T. V. Likhacheva
%T The Approximation of Functions by Transformed Fourier--Vilenkin Series in the H\"older Norm
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 72-76
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a17/
%G ru
%F ISU_2013_13_1_a17
T. V. Likhacheva. The Approximation of Functions by Transformed Fourier--Vilenkin Series in the H\"older Norm. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 72-76. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a17/

[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh Series and Transforms : Theory and Applications, Nauka, Moscow, 1987, 344 pp. | MR | Zbl

[2] Bari N. K., Stechkin S. B., “Best approximations and differential properties of two conjugate functions”, Trudy Moskov. Mat. Obshch., 5, 1956, 483–522 | MR | Zbl

[3] Das G., Ghosh T., Ray B. K., “Degree of approximation of functions by their Fourier series in the generalized Hölder metric”, Proc. Indian Acad. Sci. (Math. Sci.), 106:2 (1996), 139–153 | DOI | MR | Zbl

[4] Iofina T. V., Volosivets S. S., “On the degree of approximation by means of Fourier–Vilenkin series in Hölder and $L^p$ norm”, East J. Approximations, 15:2 (2009), 143–158 | MR

[5] Agaev G. N., Vilenkin N. Ya., Dzafarli G. M., Rubinstein A. I., Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups, Elm, Baku, 1981, 180 pp. | MR

[6] Agnew R. P., “On deferred Cesaro means”, Ann. Math., 33:2 (1932), 413–421 | DOI | MR