Koenigs Function and Fractional Iteration of Functions Analytic in the Unit Disk with Real Coefficients and Fixed Points
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 67-71

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper deals with the problem of fractional iteration of functions analytic in the unit disk, with real Taylor's coefficients. It is assumed that there exist interior and boundary fixed points. The solution is given in terms of the Koenigs function.
@article{ISU_2013_13_1_a16,
     author = {O. S. Kudryavtseva},
     title = {Koenigs {Function} and {Fractional} {Iteration} of {Functions} {Analytic} in the {Unit} {Disk} with {Real} {Coefficients} and {Fixed} {Points}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {67--71},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a16/}
}
TY  - JOUR
AU  - O. S. Kudryavtseva
TI  - Koenigs Function and Fractional Iteration of Functions Analytic in the Unit Disk with Real Coefficients and Fixed Points
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 67
EP  - 71
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a16/
LA  - ru
ID  - ISU_2013_13_1_a16
ER  - 
%0 Journal Article
%A O. S. Kudryavtseva
%T Koenigs Function and Fractional Iteration of Functions Analytic in the Unit Disk with Real Coefficients and Fixed Points
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 67-71
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a16/
%G ru
%F ISU_2013_13_1_a16
O. S. Kudryavtseva. Koenigs Function and Fractional Iteration of Functions Analytic in the Unit Disk with Real Coefficients and Fixed Points. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 67-71. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a16/