On Convergence of Expansions in Eigen Functions of Integral Operators with Discontinuous Kernel
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 59-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

For integral operators with a jump of its kernel on the diagonal it will be found necessary and sufficient conditions of invertibility. Conditions providing equiconvergence of expansions in eigen functions of these operators and trigonometric Fourier series are established.
@article{ISU_2013_13_1_a14,
     author = {V. V. Kornev},
     title = {On {Convergence} of {Expansions} in {Eigen} {Functions} of {Integral} {Operators} with {Discontinuous} {Kernel}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {59--62},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a14/}
}
TY  - JOUR
AU  - V. V. Kornev
TI  - On Convergence of Expansions in Eigen Functions of Integral Operators with Discontinuous Kernel
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 59
EP  - 62
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a14/
LA  - ru
ID  - ISU_2013_13_1_a14
ER  - 
%0 Journal Article
%A V. V. Kornev
%T On Convergence of Expansions in Eigen Functions of Integral Operators with Discontinuous Kernel
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 59-62
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a14/
%G ru
%F ISU_2013_13_1_a14
V. V. Kornev. On Convergence of Expansions in Eigen Functions of Integral Operators with Discontinuous Kernel. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 59-62. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a14/

[1] Khromov A. P., “Integral operators with kernels that are discontinuous on broken lines”, Sb. Math., 197:11 (2006), 1669–1696 | DOI | DOI | MR | Zbl

[2] Hromov A. P., “Equiconvergence theorems for integrodifferential and integral operators”, Math. USSR Sb., 42:3 (1982), 331–355 | DOI | MR