On Solutions of Some Boundary Value Problems for General KdV Equation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 46-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the general equation of Korteweg-de Vries (KdV) hierarchy. A boundary-value problem with certain inhomogeneous boundary conditions is studied. We construct the wide class of solutions of the problem using the inverse spectral method.
@article{ISU_2013_13_1_a10,
     author = {M. Yu. Ignatyev},
     title = {On {Solutions} of {Some} {Boundary} {Value} {Problems} for {General} {KdV} {Equation}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {46--49},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a10/}
}
TY  - JOUR
AU  - M. Yu. Ignatyev
TI  - On Solutions of Some Boundary Value Problems for General KdV Equation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 46
EP  - 49
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a10/
LA  - ru
ID  - ISU_2013_13_1_a10
ER  - 
%0 Journal Article
%A M. Yu. Ignatyev
%T On Solutions of Some Boundary Value Problems for General KdV Equation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 46-49
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a10/
%G ru
%F ISU_2013_13_1_a10
M. Yu. Ignatyev. On Solutions of Some Boundary Value Problems for General KdV Equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 46-49. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a10/

[1] Fokas A. S., “Integrable Nonlinear Evolution Equations on the Half-Line”, Comm. Math. Phys., 230 (2002), 1–39 | DOI | MR | Zbl

[2] Fokas A. S., Its A. R., Sung L. Y., “The Nonlinear Schroedinger Equation on the Half-Line”, Nonlinearity, 18 (2005), 1771–1822 | DOI | MR | Zbl

[3] Boutet de Monvel A., Fokas A. S., Shepelsky D., “Integrable Nonlinear Evolution Equations on a Finite Interval”, Comm. Math. Physics, 263:1 (2006), 1–133 | DOI | MR | Zbl

[4] Fokas A. S., Lenells J., “Explicit soliton asymptotics for the Korteweg–de Vries equation on the half-line”, Nonlinearity, 23 (2010), 937–976 | DOI | MR | Zbl

[5] Sklyanin E., “Boundary conditions for integrable equations”, Funct. Anal. Appl., 21 (1987), 86–87 | DOI | MR | Zbl

[6] Adler V., Gurel B., Gurses M., Habibullin I., “Boundary conditions for integrable equations”, J. Phys. A, 30:10 (1997), 3505–3513 | DOI | MR | Zbl

[7] Adler V., Khabibullin I., Shabat A., “A boundary value problem for the KdV equation on a half-line”, Theoret. and Math. Phys., 110:1 (1997), 78–90 | DOI | MR | Zbl

[8] Ignatyev M. Yu., On solutions of an integrable boundary–value problem for the KdV equation on the semi-axis, Preprint SM-DU-732, Duisburg, 2001, 18 pp. | MR | Zbl

[9] Ignatyev M., “On solution of one initial boundary value problem for KdV equation on the semi-axis”, Spectral and Evolution Problems, Proc. of the Twentieth Crimean Autumn Mathematical School-Symposium, v. 20, Simferopol, 2010, 141–144

[10] Levitan B. M., Inverse Sturm–Liouville Problems, VNU Sci. Press, Utrecht, 1987, 240 pp. | MR | MR | Zbl

[11] Marchenko V. A., “The Cauchy problem for the KdV equation with non-decreasing initial data”, What is integrability?, Springer-Verlag, Berlin–Heidelberg, 1991, 273–318 | DOI | MR | Zbl