Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_1_a1, author = {D. K. Andreichenko and K. P. Andreichenko and M. S. Komarova}, title = {The {Choice} of {Optimal} {Parameters} for {Combined} {Dynamical} {Systems}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {7--11}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a1/} }
TY - JOUR AU - D. K. Andreichenko AU - K. P. Andreichenko AU - M. S. Komarova TI - The Choice of Optimal Parameters for Combined Dynamical Systems JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 7 EP - 11 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a1/ LA - ru ID - ISU_2013_13_1_a1 ER -
%0 Journal Article %A D. K. Andreichenko %A K. P. Andreichenko %A M. S. Komarova %T The Choice of Optimal Parameters for Combined Dynamical Systems %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 7-11 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a1/ %G ru %F ISU_2013_13_1_a1
D. K. Andreichenko; K. P. Andreichenko; M. S. Komarova. The Choice of Optimal Parameters for Combined Dynamical Systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 7-11. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a1/
[1] Andreichenko D. K., Andreichenko K. P., “On the theory of hybrid dynamical systems”, J. of Computer and Systems Sciences Intern., 39:3 (2000), 383–398 | MR
[2] Andreichenko D. K., Andreichenko K. P., “On the theory of stabilization of satellites having elastic rods”, J. of Computer and Systems Sciences Intern., 43:6 (2004), 973–986 | MR | Zbl
[3] Andreichenko D. K., Andreichenko K. P., “Dynamic analysis and choice of parameters of a model of gyroscopic integrator of linear accelerations with floating platform”, J. of Computer and Systems Sciences Intern., 47:4 (2008), 570–583 | DOI | Zbl
[4] Kudryavtsev L. D., A short course of mathematical analysis. Differential and integral calculus of several variables functions. Harmonic analysis, v. 2, Physmathlit, Moscow, 2005, 424 pp.
[5] Andreichenko D. K., “An Efficient Algorithm for Numerical Inversion of the Laplace Transform”, Comp. Math. and Math. Phys., 40:7 (2000), 987–999 | MR