Local effects of the weak thermogravitational convective flows
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 56-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The features of the natural low intensity thermo-gravitational convection occurring in microacceleration condition have been investigated numerically. The effect of thermal boundary conditions on the local characteristics of temperature field has also been studied. It was shown that the value of maximum temperature stratification depends monotonically on the intensity of heat transfer at the system boundaries. The correction algorithm has been proposed for the vorticity boundary conditions on the solid impermeable walls.
@article{ISU_2012_12_4_a9,
     author = {I. A. Ermolaev and S. V. Otpoushchennikov},
     title = {Local effects of the weak thermogravitational convective flows},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {56--62},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a9/}
}
TY  - JOUR
AU  - I. A. Ermolaev
AU  - S. V. Otpoushchennikov
TI  - Local effects of the weak thermogravitational convective flows
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 56
EP  - 62
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a9/
LA  - ru
ID  - ISU_2012_12_4_a9
ER  - 
%0 Journal Article
%A I. A. Ermolaev
%A S. V. Otpoushchennikov
%T Local effects of the weak thermogravitational convective flows
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 56-62
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a9/
%G ru
%F ISU_2012_12_4_a9
I. A. Ermolaev; S. V. Otpoushchennikov. Local effects of the weak thermogravitational convective flows. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 56-62. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a9/

[1] Polezhaev V. I., “Nestatsionarnaya laminarnaya teplovaya konvektsiya v zamknutoi oblasti pri zadannom potoke tepla”, Izv. AN SSSR. Mekhanika zhidkosti i gaza, 1970, no. 4, 109–117

[2] Avduevskii V. S., Polezhaev V. I., “Nekotorye osobennosti estestvennoi konvektsii zhidkostei i gazov”, Izbrannye problemy prikladnoi mekhaniki, VINITI, M., 1974, 11–20

[3] Polezhaev V. I., “Effekt maksimuma temperaturnogo rassloeniya i ego prilozheniya”, Dokl. AN SSSR, 218:4 (1974), 783–786

[4] Polezhaev V. I., Bello M. S., Verezub N. A., Dubovik K. G., Lebedev A. P., Nikitin S. A., Pavlovskii D. S., Fedyushkin A. I., Konvektivnye protsessy v nevesomosti, Nauka, M., 1991, 240 pp.

[5] Polezhaev V. I., “Konvektsiya i protsessy teplo- i massoobmena v usloviyakh kosmicheskogo poleta”, Izv. RAN. Mekhanika zhidkosti i gaza, 2006, no. 5, 67–88 | Zbl

[6] Zemskov V. S., Raukhman M. R., Shalimov V. P., Goncharov V. A., “Peculiarities of inhomogeneities and heat/mass transfer during directional crystallization under low and normal gravity conditions”, Single crystal growth and heat mass transfer, Proceedings of First Intern. Conf., v. 2, Obninsk, 2003, 717–726

[7] Polezhaev V. I., “Rezhimy mikrouskorenii, gravitatsionnaya chuvstvitelnost i metody analiza tekhnologicheskikh eksperimentov v usloviyakh nevesomosti”, Izv. RAN. Mekhanika zhidkosti i gaza, 1994, no. 5, 22–36

[8] Asevedo Kh., Ermakov M. K., Zykov S. G., Komarov M. M., Liberman E., Nikitin S. A., Polezhaev V. I., Ryabukha S. B., Sazonov V. V., Stazhkov V. M., “Mikrouskoreniya na orbitalnoi stantsii “Mir” i operativnyi analiz gravitatsionnoi chuvstvitelnosti konvektivnykh protsessov teplo-massoperenosa”, Kosmicheskie issledovaniya, 37:1 (1999), 86–101

[9] Sazonov V. V., Yuferev V. S., “Teplovaya konvektsiya, vyzvannaya kvazistaticheskoi komponentoi polya mikrouskorenii orbitalnoi stantsii ‘Mir’ ”, Izv. RAN. Mekhanika zhidkosti i gaza, 2000, no. 3, 39–45 | Zbl

[10] Ermolaev I. A., Zhbanov A. I., Otpuschennikov S. V., “Issledovanie rezhimov malointensivnoi konvektsii v pryamougolnoi polosti s teplovym potokom na granitse”, Izv. RAN. Mekhanika zhidkosti i gaza, 2008, no. 3, 3–11 | Zbl

[11] Ermolaev I. A., Zhbanov A. I., Koshelev V. S., Otpuschennikov S. V., “Issledovanie vliyaniya chisla Prandtlya na lokalnye svoistva malointensivnoi konvektsii v podogrevaemoi snizu pryamougolnoi oblasti”, Teplofizika vysokikh temperatur, 49:4 (2011), 589–593

[12] Gershuni G. Z., Zhukhovitskii E. M., Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972, 392 pp.

[13] Zenkevich O., Morgan K., Konechnye elementy i approksimatsiya, Mir, M., 1986, 288 pp. | MR

[14] Ermolaev I. A., Zhbanov A. I., Koshelev V. S., “Reshenie dvumernoi nestatsionarnoi zadachi teplo- i massoperenosa metodom konechnykh elementov”, Voprosy prikladnoi fiziki, 8, Izd-vo Sarat. un-ta, Saratov, 2002, 60

[15] Tarunin E. L., Vychislitelnyi eksperiment v zadachakh svobodnoi konvektsii, Izd-vo Irkutsk. un-ta, Irkutsk, 1990, 225 pp.

[16] Tarunin E. L., “O vybore appraksimatsionnoi formuly dlya vikhrya skorosti na tverdoi granitse pri reshenii zadach dinamiki vyazkoi zhidkosti”, Chislennye metody mekhaniki sploshnoi sredy, 9:7 (1978), 97–111

[17] Polezhaev V. I., Gryaznov V. L., “Metod rascheta granichnykh uslovii dlya uravnenii Nave–Stoksa v peremennykh ‘vikhr, funktsiya toka’ ”, Dokl. AN SSSR, 219:2 (1974), 301–304 | Zbl

[18] Vabischevich P. N., “Raznostnye skhemy dlya zadach gidrodinamiki v peremennykh ‘funktsiya toka – vikhr skorosti’ ”, Dokl. AN, 346:4 (1996), 442–444 | MR

[19] Babenko K. I., Vvedenskaya N. D., “O chislennom reshenii kraevoi zadachi dlya uravnenii Nave–Stoksa”, Zhurn. vychisl. mat. i mat. fiz., 12:5 (1972), 1343–1349 | Zbl

[20] Fletcher K., Vychislitelnye metody v dinamike zhidkosti, v 2 t., per. s angl., v. 1, Mir, M., 1991, 504 pp. | MR

[21] Polezhaev V. I., Bune A. V., Verezub N. A., Glushko G. S., Gryaznoe B. L., Dubovik K. G., Nikitin C. A., Prostomolotov A. I., Fedoseev A. I., Cherkasov S. G., Matematicheskoe modelirovanie konvektivnogo teplo- i massoobmena na osnove uravnenii Nave–Stoksa, Nauka, M., 1987, 271 pp. | Zbl