Inverse problem for Sturm--Liouville operator on the half-line having nonintegrable singularity in an interior point
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 49-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem of recovering Sturm–Liouville operators on the half-line with a nonintegrable Bessel-type singularity in an interior point from the given Weyl function is studied. The corresponding uniqueness theorem is proved, a constructive procedure for the solution of the inverse problem is provided. Necessary and sufficient conditions of the solvability of the inverse problem are obtained.
@article{ISU_2012_12_4_a8,
     author = {A. E. Fedoseev},
     title = {Inverse problem for {Sturm--Liouville} operator on the half-line having nonintegrable singularity in an interior point},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {49--55},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a8/}
}
TY  - JOUR
AU  - A. E. Fedoseev
TI  - Inverse problem for Sturm--Liouville operator on the half-line having nonintegrable singularity in an interior point
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 49
EP  - 55
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a8/
LA  - ru
ID  - ISU_2012_12_4_a8
ER  - 
%0 Journal Article
%A A. E. Fedoseev
%T Inverse problem for Sturm--Liouville operator on the half-line having nonintegrable singularity in an interior point
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 49-55
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a8/
%G ru
%F ISU_2012_12_4_a8
A. E. Fedoseev. Inverse problem for Sturm--Liouville operator on the half-line having nonintegrable singularity in an interior point. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 49-55. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a8/

[1] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977, 330 pp. | MR

[2] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984, 239 pp. | MR | Zbl

[3] Yurko V. A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 1984, 384 pp.

[4] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002, 303 pp. | MR | Zbl

[5] Yurko V. A., “O vosstanovlenii singulyarnykh nesamosopryazhennykh differentsialnykh operatorov s osobennostyu vnutri intervala”, Differentsialnye uravneniya, 38:5 (2002), 645–659 | MR | Zbl

[6] Fedoseev A. E., “Inverse problems for differential equations on the half-line having a singularity in an interior point”, Tamkang J. of Math., 42:3 (2011), 343–354 | DOI | MR | Zbl