Necessary and sufficient conditions of belonging to the Besov--Potapov classes and Fourier coefficients with respect to multiplicative systems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 41-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain necessary and sufficient conditions for a function to belong to the Besov–Potapov classes. Using functions with Fourier coefficients with respect to multiplicative systems from the class GM, we show the sharpness of some these results.
@article{ISU_2012_12_4_a7,
     author = {R. N. Fadeev},
     title = {Necessary and sufficient conditions of belonging to the {Besov--Potapov} classes and {Fourier} coefficients with respect to multiplicative systems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {41--48},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a7/}
}
TY  - JOUR
AU  - R. N. Fadeev
TI  - Necessary and sufficient conditions of belonging to the Besov--Potapov classes and Fourier coefficients with respect to multiplicative systems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 41
EP  - 48
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a7/
LA  - ru
ID  - ISU_2012_12_4_a7
ER  - 
%0 Journal Article
%A R. N. Fadeev
%T Necessary and sufficient conditions of belonging to the Besov--Potapov classes and Fourier coefficients with respect to multiplicative systems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 41-48
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a7/
%G ru
%F ISU_2012_12_4_a7
R. N. Fadeev. Necessary and sufficient conditions of belonging to the Besov--Potapov classes and Fourier coefficients with respect to multiplicative systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 41-48. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a7/

[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987, 344 pp. | MR | Zbl

[2] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR

[3] Potapov M. K., “O vzaimosvyazi nekotorykh klassov funktsii”, Mat. zametki, 2:4 (1967), 361–372 | MR | Zbl

[4] Potapov M. K., “O vlozhenii i sovpadenii nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 33:4 (1969), 840–860 | MR | Zbl

[5] Volosivets S. S., “Fourier–Vilenkin series and analogs of Besov and Sobolev classes”, Annales Univ. Sci. Budapest Sect. Comp., 33 (2010), 343–363 | MR | Zbl

[6] Potapov M. K., Berisha M., “Modules of smoothness and Fourier coefficients of periodic functions of one variable”, Publ. Inst. Math. (Beograd), 26(40) (1979), 215–228 | MR | Zbl

[7] Berisha M., “O koeffitsientakh Fure nekotorykh klassov funktsii”, Glasnik Mat. Ser. III, 16(36) (1981), 75–90 | MR | Zbl

[8] Berisha M., “Neobkhodimye usloviya koeffitsientov Fure periodicheskikh funktsii, prinadlezhaschikh $B(p,\theta,k,\alpha)$-klassam tipa Besova”, Publ. Inst. Math. (Beograd), 35(49) (1984), 87–92 | MR

[9] Berisha M., “Otsenka koeffitsientov Fure funktsii, prinadlezhaschikh klassam Besova”, Publ. Inst. Math. (Beograd), 38(52) (1985), 153–157 | MR

[10] Tikhonov S., “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl

[11] Leindler L., “Generalization of inequlities of Hardy and Littlewood”, Acta Sci. Math. (Szeged), 31:3–4 (1970), 279–285 | MR | Zbl

[12] Khardi G., Littlvud Dzh., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948, 456 pp.

[13] Leindler L., “Inequalities of Hardy–Littlewood type”, Analysis Math., 2:2 (1976), 117–123 | DOI | MR | Zbl

[14] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981, 180 pp. | MR

[15] Watari C., “On generalized Walsh–Fourier series”, Tohoku Math. J., 16:3 (1958), 211–241 | DOI | MR

[16] Agafonova N. Yu., “O nailuchshikh priblizheniyakh funktsii po multiplikativnym sistemam i svoistvakh ikh koeffitsientov Fure”, Analysis Math., 33:4 (2007), 247–262 | DOI | MR | Zbl