Necessary and sufficient conditions of belonging to the Besov–Potapov classes and Fourier coefficients with respect to multiplicative systems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 41-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we obtain necessary and sufficient conditions for a function to belong to the Besov–Potapov classes. Using functions with Fourier coefficients with respect to multiplicative systems from the class GM, we show the sharpness of some these results.
@article{ISU_2012_12_4_a7,
     author = {R. N. Fadeev},
     title = {Necessary and sufficient conditions of belonging to the {Besov{\textendash}Potapov} classes and {Fourier} coefficients with respect to multiplicative systems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {41--48},
     year = {2012},
     volume = {12},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a7/}
}
TY  - JOUR
AU  - R. N. Fadeev
TI  - Necessary and sufficient conditions of belonging to the Besov–Potapov classes and Fourier coefficients with respect to multiplicative systems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 41
EP  - 48
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a7/
LA  - ru
ID  - ISU_2012_12_4_a7
ER  - 
%0 Journal Article
%A R. N. Fadeev
%T Necessary and sufficient conditions of belonging to the Besov–Potapov classes and Fourier coefficients with respect to multiplicative systems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 41-48
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a7/
%G ru
%F ISU_2012_12_4_a7
R. N. Fadeev. Necessary and sufficient conditions of belonging to the Besov–Potapov classes and Fourier coefficients with respect to multiplicative systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 41-48. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a7/

[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987, 344 pp. | MR | Zbl

[2] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR

[3] Potapov M. K., “O vzaimosvyazi nekotorykh klassov funktsii”, Mat. zametki, 2:4 (1967), 361–372 | MR | Zbl

[4] Potapov M. K., “O vlozhenii i sovpadenii nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 33:4 (1969), 840–860 | MR | Zbl

[5] Volosivets S. S., “Fourier–Vilenkin series and analogs of Besov and Sobolev classes”, Annales Univ. Sci. Budapest Sect. Comp., 33 (2010), 343–363 | MR | Zbl

[6] Potapov M. K., Berisha M., “Modules of smoothness and Fourier coefficients of periodic functions of one variable”, Publ. Inst. Math. (Beograd), 26(40) (1979), 215–228 | MR | Zbl

[7] Berisha M., “O koeffitsientakh Fure nekotorykh klassov funktsii”, Glasnik Mat. Ser. III, 16(36) (1981), 75–90 | MR | Zbl

[8] Berisha M., “Neobkhodimye usloviya koeffitsientov Fure periodicheskikh funktsii, prinadlezhaschikh $B(p,\theta,k,\alpha)$-klassam tipa Besova”, Publ. Inst. Math. (Beograd), 35(49) (1984), 87–92 | MR

[9] Berisha M., “Otsenka koeffitsientov Fure funktsii, prinadlezhaschikh klassam Besova”, Publ. Inst. Math. (Beograd), 38(52) (1985), 153–157 | MR

[10] Tikhonov S., “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl

[11] Leindler L., “Generalization of inequlities of Hardy and Littlewood”, Acta Sci. Math. (Szeged), 31:3–4 (1970), 279–285 | MR | Zbl

[12] Khardi G., Littlvud Dzh., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948, 456 pp.

[13] Leindler L., “Inequalities of Hardy–Littlewood type”, Analysis Math., 2:2 (1976), 117–123 | DOI | MR | Zbl

[14] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981, 180 pp. | MR

[15] Watari C., “On generalized Walsh–Fourier series”, Tohoku Math. J., 16:3 (1958), 211–241 | DOI | MR

[16] Agafonova N. Yu., “O nailuchshikh priblizheniyakh funktsii po multiplikativnym sistemam i svoistvakh ikh koeffitsientov Fure”, Analysis Math., 33:4 (2007), 247–262 | DOI | MR | Zbl