Wiener's theorem for periodic at infinity functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 34-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article banach algebra of periodic at infinity functions is defined. For this class of functions notions of Fourier series and absolutely convergent Fourier series are introduced. As a result Wiener's theorem analog devoted to absolutely convergent Fourier series for periodic at infinity functions was proved.
@article{ISU_2012_12_4_a6,
     author = {I. I. Strukova},
     title = {Wiener's theorem for periodic at infinity functions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {34--41},
     year = {2012},
     volume = {12},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a6/}
}
TY  - JOUR
AU  - I. I. Strukova
TI  - Wiener's theorem for periodic at infinity functions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 34
EP  - 41
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a6/
LA  - ru
ID  - ISU_2012_12_4_a6
ER  - 
%0 Journal Article
%A I. I. Strukova
%T Wiener's theorem for periodic at infinity functions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 34-41
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a6/
%G ru
%F ISU_2012_12_4_a6
I. I. Strukova. Wiener's theorem for periodic at infinity functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 34-41. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a6/

[1] Kakhan Zh. P., Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976, 203 pp.

[2] Viner N., Integral Fure i nekotorye ego prilozheniya, Fizmatlit, M., 1963, 256 pp.

[3] Bochner S., Fillips R. S., “Absolutely convergent Fourier expansion for non-commutative normed rings”, Ann. of Math., 43:3 (1942), 409–418 | DOI | MR | Zbl

[4] Baskakov A. G., “Otsenki elementov obratnykh matrits i spektralnyi analiz lineinykh operatorov”, Izv. RAN. Ser. matematicheskaya, 61:6 (1997), 3–26 | DOI | MR | Zbl

[5] Baskakov A. G., “Asimptoticheskie otsenki elementov matrits obratnykh operatorov i garmonicheskii analiz”, Sib. mat. zhurn., 38:1 (1997), 14–28 | MR | Zbl

[6] Groechenig K., “Wiener's lemma: theme and variations. An introduction to spectral invariance and its applications”, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, 2010, 60–63

[7] Kaluzhina N. S., “Medlenno menyayuschiesya funktsii, periodicheskie na beskonechnosti funktsii i ikh svoistva”, Vestn. Voronezh. gos. un-ta. Ser. Fizika. Matematika, 2010, no. 2, 97–102

[8] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Sovremennaya matematika. Fundamentalnye napravleniya, 9, 2004, 3–151 | MR | Zbl

[9] Baskakov A. G., “Abstraktnyi garmonicheskii analiz i asimptoticheskie otsenki elementov obratnykh matrits”, Mat. zametki, 52:2 (1992), 17–26 | MR | Zbl