Wiener's theorem for periodic at infinity functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 34-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article banach algebra of periodic at infinity functions is defined. For this class of functions notions of Fourier series and absolutely convergent Fourier series are introduced. As a result Wiener's theorem analog devoted to absolutely convergent Fourier series for periodic at infinity functions was proved.
@article{ISU_2012_12_4_a6,
     author = {I. I. Strukova},
     title = {Wiener's theorem for periodic at infinity functions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {34--41},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a6/}
}
TY  - JOUR
AU  - I. I. Strukova
TI  - Wiener's theorem for periodic at infinity functions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 34
EP  - 41
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a6/
LA  - ru
ID  - ISU_2012_12_4_a6
ER  - 
%0 Journal Article
%A I. I. Strukova
%T Wiener's theorem for periodic at infinity functions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 34-41
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a6/
%G ru
%F ISU_2012_12_4_a6
I. I. Strukova. Wiener's theorem for periodic at infinity functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 34-41. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a6/

[1] Kakhan Zh. P., Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976, 203 pp.

[2] Viner N., Integral Fure i nekotorye ego prilozheniya, Fizmatlit, M., 1963, 256 pp.

[3] Bochner S., Fillips R. S., “Absolutely convergent Fourier expansion for non-commutative normed rings”, Ann. of Math., 43:3 (1942), 409–418 | DOI | MR | Zbl

[4] Baskakov A. G., “Otsenki elementov obratnykh matrits i spektralnyi analiz lineinykh operatorov”, Izv. RAN. Ser. matematicheskaya, 61:6 (1997), 3–26 | DOI | MR | Zbl

[5] Baskakov A. G., “Asimptoticheskie otsenki elementov matrits obratnykh operatorov i garmonicheskii analiz”, Sib. mat. zhurn., 38:1 (1997), 14–28 | MR | Zbl

[6] Groechenig K., “Wiener's lemma: theme and variations. An introduction to spectral invariance and its applications”, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, 2010, 60–63

[7] Kaluzhina N. S., “Medlenno menyayuschiesya funktsii, periodicheskie na beskonechnosti funktsii i ikh svoistva”, Vestn. Voronezh. gos. un-ta. Ser. Fizika. Matematika, 2010, no. 2, 97–102

[8] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Sovremennaya matematika. Fundamentalnye napravleniya, 9, 2004, 3–151 | MR | Zbl

[9] Baskakov A. G., “Abstraktnyi garmonicheskii analiz i asimptoticheskie otsenki elementov obratnykh matrits”, Mat. zametki, 52:2 (1992), 17–26 | MR | Zbl