On verification of Brauer's theorem concerning Artin's $L$-functions of number fields
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 31-34
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper investigates problem of analytic continuation of Artin's $L$-functions. One refinement of Brauer's theorem was obtained. It states that in the case of non-main character all possible poles of Artin's $L$-functions should lay on the critical line.
@article{ISU_2012_12_4_a5,
author = {D. S. Stepanenko},
title = {On verification of {Brauer's} theorem concerning {Artin's} $L$-functions of number fields},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {31--34},
year = {2012},
volume = {12},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a5/}
}
TY - JOUR AU - D. S. Stepanenko TI - On verification of Brauer's theorem concerning Artin's $L$-functions of number fields JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2012 SP - 31 EP - 34 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a5/ LA - ru ID - ISU_2012_12_4_a5 ER -
%0 Journal Article %A D. S. Stepanenko %T On verification of Brauer's theorem concerning Artin's $L$-functions of number fields %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2012 %P 31-34 %V 12 %N 4 %U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a5/ %G ru %F ISU_2012_12_4_a5
D. S. Stepanenko. On verification of Brauer's theorem concerning Artin's $L$-functions of number fields. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 31-34. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a5/
[1] Artin E., “Über eine neue Art von $L$-Reihen”, Abh. Math. Sem. Hamburgischen Univ., 3 (1923), 89–108 | DOI | MR | Zbl
[2] Kheilbron Kh., “$\zeta$-funktsii i $L$-funktsii”, Algebraicheskaya teoriya chisel, Mir, M., 1969, 310–348 | MR
[3] Brauer R., “On Artin's $L$-series with general group characters”, Ann. of Math., 48 (1947), 502–514 | DOI | MR | Zbl
[4] Kassel Dzh., Frelikh A., “Normy iz neabelevykh rasshirenii”, Algebraicheskaya teoriya chisel, Mir, M., 1969, 476