On verification of Brauer's theorem concerning Artin's $L$-functions of number fields
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 31-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates problem of analytic continuation of Artin's $L$-functions. One refinement of Brauer's theorem was obtained. It states that in the case of non-main character all possible poles of Artin's $L$-functions should lay on the critical line.
@article{ISU_2012_12_4_a5,
     author = {D. S. Stepanenko},
     title = {On verification of {Brauer's} theorem concerning {Artin's} $L$-functions of number fields},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {31--34},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a5/}
}
TY  - JOUR
AU  - D. S. Stepanenko
TI  - On verification of Brauer's theorem concerning Artin's $L$-functions of number fields
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 31
EP  - 34
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a5/
LA  - ru
ID  - ISU_2012_12_4_a5
ER  - 
%0 Journal Article
%A D. S. Stepanenko
%T On verification of Brauer's theorem concerning Artin's $L$-functions of number fields
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 31-34
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a5/
%G ru
%F ISU_2012_12_4_a5
D. S. Stepanenko. On verification of Brauer's theorem concerning Artin's $L$-functions of number fields. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 31-34. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a5/

[1] Artin E., “Über eine neue Art von $L$-Reihen”, Abh. Math. Sem. Hamburgischen Univ., 3 (1923), 89–108 | DOI | MR | Zbl

[2] Kheilbron Kh., “$\zeta$-funktsii i $L$-funktsii”, Algebraicheskaya teoriya chisel, Mir, M., 1969, 310–348 | MR

[3] Brauer R., “On Artin's $L$-series with general group characters”, Ann. of Math., 48 (1947), 502–514 | DOI | MR | Zbl

[4] Kassel Dzh., Frelikh A., “Normy iz neabelevykh rasshirenii”, Algebraicheskaya teoriya chisel, Mir, M., 1969, 476