Algorithm of integrating stiff problems using the explicit and implicit methods
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 19-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $L$-stable $(3,2)$-method order 3 and an explicit three-stage Runge–Kutta scheme order 1 are constructed. An integration algorithm of variable order and step is constructed that is based on of the two schemes The most effective numerical scheme is chosen for each step by means of stability control. The results are given that confirm the effectiveness of the algorithm.
@article{ISU_2012_12_4_a3,
     author = {E. A. Novikov},
     title = {Algorithm of integrating stiff problems using the explicit and implicit methods},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {19--27},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a3/}
}
TY  - JOUR
AU  - E. A. Novikov
TI  - Algorithm of integrating stiff problems using the explicit and implicit methods
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 19
EP  - 27
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a3/
LA  - ru
ID  - ISU_2012_12_4_a3
ER  - 
%0 Journal Article
%A E. A. Novikov
%T Algorithm of integrating stiff problems using the explicit and implicit methods
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 19-27
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a3/
%G ru
%F ISU_2012_12_4_a3
E. A. Novikov. Algorithm of integrating stiff problems using the explicit and implicit methods. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 19-27. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a3/

[1] Hairer E., Wanner G., Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, Springer-Verlag, Berlin, 2004, 614 pp.

[2] Byrne G. D., Hindmarsh A. C., “ODE solvers: a review of current and coming attractions”, J. of Comp. Phys., 70 (1987), 1–62 | DOI | MR | Zbl

[3] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Computer, 5 (1963), 329–330 | MR | Zbl

[4] Novikov V. A., Novikov E. A., Yumatova L. A., “Zamorazhivanie matritsy Yakobi v metode tipa Rozenbroka vtorogo poryadka tochnosti”, Zhurn. vychisl. mat. i mat. fiz., 27:3 (1987), 385–390 | MR | Zbl

[5] Novikov E. A., “Postroenie algoritma integrirovaniya zhestkikh sistem differentsialnykh uravnenii na neodnorodnykh skhemakh”, Dokl. AN SSSR, 278:2 (1984), 272–275 | MR | Zbl

[6] Novikov V. A., Novikov E. A., “Povyshenie effektivnosti algoritmov integrirovaniya obyknovennykh differentsialnykh uravnenii za schet kontrolya ustoichivosti”, Zhurn. vychisl. mat. i mat. fiz., 25:7 (1985), 1023–1030 | MR | Zbl

[7] Novikov E. A., Yavnye metody dlya zhestkikh sistem, Nauka, Novosibirsk, 1997, 197 pp. | MR

[8] Novikov E. A., Shitov Yu. A., Shokin Yu. I., “Odnoshagovye bezyteratsionnye metody resheniya zhestkikh sistem”, Dokl. AN SSSR, 301:6 (1988), 1310–1314 | MR

[9] Novikov A. E., Novikov E. A., “Chislennoe reshenie zhestkikh zadach s nebolshoi tochnostyu”, Matematicheskoe modelirovanie, 22:1 (2010), 46–56 | MR | Zbl

[10] Demidov G. V., Yumatova L. A., Issledovanie tochnosti neyavnykh odnoshagovykh metodov, Preprint No 11, VTs SO AN SSSR, Novosibirsk, 1976, 22 pp.

[11] Novikova E. A., “Algoritm peremennogo poryadka i shaga na osnove yavnogo trekhstadiinogo metoda tipa Runge–Kutta”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:3, ch. 1 (2011), 46–53