The conditions of invertibility of a class nonselfadjoint operators
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 14-19
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work we obtain the conditions of invertibility of a class of nonselfadjoint operator that are difference between the nonbounded antisymmetric and the normal operator.
@article{ISU_2012_12_4_a2,
author = {S. V. Maryushenkov},
title = {The conditions of invertibility of a~class nonselfadjoint operators},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {14--19},
year = {2012},
volume = {12},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a2/}
}
TY - JOUR AU - S. V. Maryushenkov TI - The conditions of invertibility of a class nonselfadjoint operators JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2012 SP - 14 EP - 19 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a2/ LA - ru ID - ISU_2012_12_4_a2 ER -
S. V. Maryushenkov. The conditions of invertibility of a class nonselfadjoint operators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 14-19. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a2/
[1] Baskakov A. G., “Dikhotomiya spektra nesamosopryazhennykh operatorov”, Sib. mat. zhurn., 32:3 (1991), 24–30 | MR | Zbl
[2] Baskakov A. G., Yurgelas V. V., “Krugovaya dikhotomiya spektra odnogo klassa nesamosopryazhennykh operatorov”, Izv. vuzov, 1994, no. 10, 12–18 | MR | Zbl
[3] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, M., 1997, 407 pp. | Zbl