Numerical analysis of renal artery pathologies
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 107-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical modeling based on experimental data (ultrasonic imaging, angiography, 3D reconstruction via spiral computed tomography) was performed. Anatomically precise model of renal artery was created. Basic principles of blood flow dynamics with stressstrain state of artery walls were studied for normal, pathologic renal arteries and arteries with hemostasis of intraorganic branches.
@article{ISU_2012_12_4_a16,
     author = {O. A. Schuchkina and A. A. Goliadkina and A. V. Aristambekova and D. Yu. Potapov},
     title = {Numerical analysis of renal artery pathologies},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {107--111},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a16/}
}
TY  - JOUR
AU  - O. A. Schuchkina
AU  - A. A. Goliadkina
AU  - A. V. Aristambekova
AU  - D. Yu. Potapov
TI  - Numerical analysis of renal artery pathologies
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 107
EP  - 111
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a16/
LA  - ru
ID  - ISU_2012_12_4_a16
ER  - 
%0 Journal Article
%A O. A. Schuchkina
%A A. A. Goliadkina
%A A. V. Aristambekova
%A D. Yu. Potapov
%T Numerical analysis of renal artery pathologies
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 107-111
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a16/
%G ru
%F ISU_2012_12_4_a16
O. A. Schuchkina; A. A. Goliadkina; A. V. Aristambekova; D. Yu. Potapov. Numerical analysis of renal artery pathologies. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 107-111. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a16/

[1] Snedeker J. G., Barbezat M., Niederer P., Schmidlin F. R., Farshad M., “Strain energy density as a rupture criterion for the kidney: impact tests on porcine organs, finite element simulation, and a baseline comparison between human and porcine tissues”, J. Biomech., 38 (2005), 993–1001 | DOI

[2] Snedeker J. G., Niederer P., Schmidlin F. R., Farshad M., Demetropoulos C. K., Lee J. B., Yang K. H., “Strain-rate dependent material properties of the porcine and human kidney capsule”, J. Biomech., 38 (2005), 1011–1021 | DOI

[3] Weinberg K., Ortiz M., “Shock wave induced damage in kidney tissue”, Computational Materials Science, 32 (2005), 588–593 | DOI

[4] Glybochko V. P., Nikolenko V. N., Ponukalin A. N., Potapov D. Yu., Belova Yu. A., “Biomekhanicheskie svoistva pochki v eksperimente”, Nauchno-teoreticheskii meditsinskii zhurn. Morfologiya, 2010, no. 4, 56–57

[5] He X., McGee S., Coad J., Schmidlin F., Iaizzo P. A., Swanlund D. J., Kluge S., Rudie E., Bischof J. C., “Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model”, Intern. J. Hyperthermia, 20:6 (2004), 567–593 | DOI | MR

[6] Meyer M., Velte H., Lindenborn H., Bangert A., Dahlhaus D., Albers P., “Radiofrequency ablation of renal tumors improved by preoperative ex-vivo computer simulation model”, J. Endourol., 21:8 (2007), 886–890 | DOI

[7] He X., Bischof J., “Analysis of thermal stress in cryosurgery of kidneys”, J. Biomech. Engin., 127:4 (2005), 656–661 | DOI

[8] Weinberg K., Ortiz M., “Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles”, Biomech. Model Mechanobiol., 8:4 (2009), 285–299 | DOI | MR

[9] Afshari E., Najarian S., Simforoosh N., “Application of artificial tactile sensing approach in kidney-stone-removal laparoscopy”, Biomed. Mater. Engin., 20:5 (2010), 261–267

[10] Vahidi B. A., Fatouraee N., “A numerical simulation of peristaltic motion in the ureter using fluid structure interactions”, Proc. Conf. IEEE Engin. Med. Biol. Soc., Lyon, France, 2007, 1167–1171

[11] Krywonos J., Fenwick J., Elkut F., Jenkinson I., Liu Y. H., Brunt J. N. H., Scott A., Malik Z., Eswar C., Ren X. J., “MRI image-based FE modelling of the pelvis system and bladder filling”, Comput. Methods Biomech. Biomed. Engin., 13:6 (2010), 669–676 | DOI

[12] Keshtkar J., “Modeled current distribution inside the normal and malignant human urothelium using finite element analysis”, IEEE Trans. Biomed. Engin., 55:2, Pt. 1 (2008), 733–738 | DOI

[13] Kamenskiy A., Pipinos I., Desyatova A., Salkovskiy Y., Kossovich L., Kirillova I., Bockeria L., Morozov K., Polyaev V., Lynch T., Dzenis Y., “Finite Element Model of the Patched Human Carotid”, Vascular and Endovascular Surgery, 43:6 (2009), 533–541 | DOI

[14] Pavlova O. E., Gramakova A. A., Morozov K. M., Suslov I. I., “Gemodinamika i mekhanicheskoe povedenie bifurkatsii sonnoi arterii s patologicheskoi izvitostyu”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 10:2 (2010), 66–73