Mechanical properties study for graphene sheets of various size
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 63-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We studied mechanical properties of large graphene sheets. The Young's modulus was found for each of the considered nanoparticles and sheets. To this end, the deformation was applied in two orthogonal directions – zigzag and armchair directions of the graphene atomic framework. It was established that there exist a size effect on the Young's modulus of graphene. Also, it was found that themechanical properties of graphene become close to isotropic ones when the linear dimensions of the latter are large enough for it to be considered as a macro-particle. Also, under these conditions, the Young's modulus becomes close to 1.1 TPa.
@article{ISU_2012_12_4_a10,
     author = {O. E. Glukhova and I. V. Kirillova and E. L. Kossovich and A. A. Fadeev},
     title = {Mechanical properties study for graphene sheets of various size},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {63--66},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a10/}
}
TY  - JOUR
AU  - O. E. Glukhova
AU  - I. V. Kirillova
AU  - E. L. Kossovich
AU  - A. A. Fadeev
TI  - Mechanical properties study for graphene sheets of various size
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 63
EP  - 66
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a10/
LA  - ru
ID  - ISU_2012_12_4_a10
ER  - 
%0 Journal Article
%A O. E. Glukhova
%A I. V. Kirillova
%A E. L. Kossovich
%A A. A. Fadeev
%T Mechanical properties study for graphene sheets of various size
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 63-66
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a10/
%G ru
%F ISU_2012_12_4_a10
O. E. Glukhova; I. V. Kirillova; E. L. Kossovich; A. A. Fadeev. Mechanical properties study for graphene sheets of various size. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 63-66. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a10/

[1] Griffith A. A., “The phenomena of rupture and flow in solids”, Philosophical Transactions of the Royal Society of London. Ser. A, 221 (1921), 163–198 | DOI

[2] Cowie J. M. G., Polymers: Chemistry and Physics of Modern Materials, Blackie Academic, N.Y., 1991, 436 pp.

[3] Geim A. K., “Graphene: status and prospects”, Science, 324 (2009), 5934 | DOI

[4] Jiang J.-W., Wang J.-S., Li B., “Young's modulus of graphene: a molecular dynamics study”, Phys. Rev. Ser. B, 80 (2009), 113–405

[5] Lee C., Wei X., Kysar J. W., Hone J., “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, 321 (2008), 385 | DOI

[6] Reddy C. D., Rajendran S., Liew K. M., “Equilibrium configuration and continuum elastic properties of finite sized graphene”, Nanotechnology, 17 (2006), 864–870 | DOI

[7] Arroyo M., Belytschko T., “Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule”, Phys. Rev. B, 69 (2004), 115415 | DOI

[8] Brenner D. W., “Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films”, Phys. Rev. Ser. B, 42 (1990), 9458–9471 | DOI

[9] Brenner D. W., Shenderova O. A., Harrison J. A., Stuart S. J., Ni B., Sinnott S. B., “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”, J. Phys. Condens. Matter., 14 (2002), 783–802 | DOI

[10] Kudin K. N., Scuseria G. E., Yakobson B. I., “$\mathrm{C_2F}$, $\mathrm{BN}$ and $\mathrm C$ nanoshell elasticity from ab initio computations”, Phys. Rev. Ser. B, 64 (2001), 235406 | DOI

[11] Shimpi R. P., Patel H. G., “A two variable refined plate theory for orthotropic plate analysis”, Intern. J. Solids and Structures, 43:22–23 (2006), 6783–6799 | DOI | Zbl

[12] Tsiatas G. C., Yiotis A. J., “A microstructure-dependent orthotropic plate model based on a modified couple stress theory”, Recent Developments in Boundary Element Methods, A Volume to Honour Professor John T. Katsikadelis, ed. E. J. Sapountzakis, WIT Press, Southampton, 2010, 295–308 | DOI

[13] Setoodeh A. R., Malekzadeh P., Vosoughi A. R., “Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory”, Proc. Mech. Part C : J. Mechanical Engineering Science, 226 (2012), 1896–1906 | DOI

[14] Narendar S., Gopalakrishnan S., “Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory”, Acta Mech., 223 (2012), 395–413 | DOI | MR | Zbl

[15] Wang Q., “Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes”, Intern. J. Solid Struct., 41 (2004), 5451–5461 | DOI | Zbl

[16] Shokrieh M. M., Rafiee R., “Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach”, Materials and Design, 31 (2010), 790–795 | DOI

[17] Glukhova O. E., Terentev O. A., “Teoreticheskoe issledovanie elektronnykh i mekhanicheskikh svoistv C-N odnosloinykh nanotrubok”, Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 10:4 (2007), 85–89

[18] Glukhova O. E., “Zhestkost Y-obraznykh uglerodnykh nanotrubok pri deformatsii rastyazheniya/szhatiya”, Nano- i mikrosictemnaya tekhnika, 2009, no. 1, 19–22

[19] Das S., Seelaboyina R., Verma V., Lahiri I., Hwang J. Y., Benerjee R., Choi W., “Synthesis and characterization of self-organized multilayered graphene-carbon nanotube hybrid films”, J. Mater. Chem., 21 (2011), 7289–7295 | DOI