$3$-dimentional mathematical model of blood flow with secondary heart theory
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 62-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents haemodynamics of blood vessels mathematical model. There is $3$-dimentional system of equations describes blood flow, where vessel motions are taking in account.
@article{ISU_2012_12_3_a9,
     author = {A. V. Dol and Yu. P. Gulyaev},
     title = {$3$-dimentional mathematical model of blood flow with secondary heart theory},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {62--66},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a9/}
}
TY  - JOUR
AU  - A. V. Dol
AU  - Yu. P. Gulyaev
TI  - $3$-dimentional mathematical model of blood flow with secondary heart theory
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 62
EP  - 66
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a9/
LA  - ru
ID  - ISU_2012_12_3_a9
ER  - 
%0 Journal Article
%A A. V. Dol
%A Yu. P. Gulyaev
%T $3$-dimentional mathematical model of blood flow with secondary heart theory
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 62-66
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a9/
%G ru
%F ISU_2012_12_3_a9
A. V. Dol; Yu. P. Gulyaev. $3$-dimentional mathematical model of blood flow with secondary heart theory. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 62-66. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a9/

[1] Obrezan A. G., Shunkevich T. N., “Teoriya “perifericheskogo serdtsa” professora M. V. Yanovskogo: klassicheskie i sovremennye predstavleniya”, Vestn. Sankt-Peterb. un-ta. Ser. 11, 2008, no. 3, 14–23

[2] Gulyaev Yu. P., Kossovich L. Yu., Matematicheskie modeli biomekhaniki v meditsine, Saratov, 2001, 49 pp.

[3] Vilde M. V., Gulyaev Yu. P., “Nizkochastotnye osesimmetrichnye volny v krovenosnykh sosudakh postoyannogo secheniya: asimptoticheskii podkhod”, Izv. RAN. MTT, 2009, no. 4, 136–151